2022 Chinese Expert Consensus Statement on the Management of Extracorporeal Shockwave Therapy in Musculoskeletal Disorders during Novel Coronavirus Pandemic Prevention and Control

Review Article | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 27-31 | Fuqiang Gao , Xiangwei Ma , Wei Sun , Zirong Li , Jike Lu

DOI: 10.13107/jrs.2022.v02.i01.41

Author: Fuqiang Gao [1,2], Xiangwei Ma [3], Wei Sun [1,4], Zirong Li [1,2], Jike Lu [5]

[1] Shockwave Center, Department of Orthopedics, China-Japan Friendship Hospital, Chaoyang, Beijing, China.

[2] Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Chaoyang, Beijing, China.

[3] Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Chaoyang, Beijing, China.

[4] Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

[5] Department of Orthopedics, Beijing United Family Hospital, Chaoyang, Beijing, China.

Address of Correspondence
Dr. Wei Sun, Shockwave Centers,
Department of Orthopedics, China-Japan Friendship Hospital, Chaoyang, Beijing, China.
E-mail: sun887@163.com


Novel coronavirus pneumonia (corona virus disease 2019, [COVID-19]) is a novel respiratory infectious disease that has rapidly spread in many countries or regions around the world [1, 2, 3] . With the approval of the State Council, COVID-19 was included in the category B infectious diseases under the Law of the People’s People’s Republic of China on the Prevention and Control of Infectious Diseases, and the preventive and control measures for category A infectious diseases were adopted. Given the severity of the COVID-19 epidemic, the wide spread of transmission, and the human-to-human transmission, some patients with musculoskeletal disorders visiting hospitals and health care
workers engaged in medical shockwave technology are at potential risk of COVID-19 infection. The 2022 Chinese expert consensus statement on the Management of Musculoskeletal Disease Extracorporeal Shock Wave during the Prevention and Control of Novel Coronavirus Epidemic is formulated..

Keywords: Chinese expert consensus, Extracorporeal shockwave, Management, Musculoskeletal disorders, Novel coronavirus pandemic.


1. Chang D, Lin M, Wei L, Xie L, Zhu G, Cruz CS, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA2020;323:1092-3.
2. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: Adescriptive study. Lancet 2020;395:507-13.
3. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J Engl 2020;133:1025-31.
4. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill 2020;25:2000058.
5. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581:465-9.
6. General Office of the National Health Commission, Office of the State Administration of Traditional Chinese Medicine. Pneumonia Diagnosis and Treatment Program for Novel Coronavirus Infection. 9th ed. New Delhi: General Office of the National Health Commission; 2022. Available from: http://www.gov.cn/zhengce/zhengceku/2022-03/15/content_5679257.htm last accessed on 2022.
7. Wei Y, Lu Y, Xia L, Yuan X, Li G, Li X, et al. Analysis of 2019 novel coronavirus infection and clinical characteristics of outpatients: An epidemiological study from a fever clinic in Wuhan, China. J Med Virol 2020;92:2758-67.
8. Krishnan A, Hamilton JP, Alqahtani SA, Woreta TA. A narrative review of coronavirus disease 2019 (COVID-19): Clinical, epidemiological characteristics, and systemic manifestations. Intern Emerg Med 2021;16:815-30.
9. Zhang J, Zhang B, Ni X. Questions about the implementation of management specifications for environmental surface cleaning and disinfection in medical institutions. Chin J Hosp Infect Dis 2018;28:473-6.
10. Fathizadeh H, Maroufi P, Momen-Heravi M, Dao S, Köse Ş, Ganbarov K, et al. Protection and disinfection policies against SARS-CoV-2 (COVID-19). Infez Med 2020;28:185-91.
11. Bielecki M, Patel D, Hinkelbein J, Komorowski M, Kester J, Ebrahim S, et al. Air travel and COVID-19 prevention in the pandemic and peri-pandemic period: A narrative review. Travel Med Infect Dis 2021;39:101915.
12. Wu W, Guan H, Fang Z, Guo F, You H, Xiao J, et al. Standardized process of orthopedic diagnosis and treatment during the outbreak of novel coronavirus pneumonia Recommendation. Orthopedics 2020;11:93-9.
13. Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med 2020;27:taaa020.
14. Wong JS, Cheung KM. Impact of COVID-19 on orthopaedic and trauma service: An epidemiological study. J Bone Joint Surg Am 2020;102:e80.
15. Hirschmann MT, Hart A, Henckel J, Sadoghi P, Seil R, Mouton C. COVID-19 coronavirus: Recommended personal protective equipment for the orthopaedic and trauma surgeon. Knee Surg Sports Traumatol Arthrosc 2020;28:1690-8.

16. Wu S, Wang Y, Jin X, Tian J, Liu J, Mao Y. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am J Infect Control 2020;48:910-4.
17. Tanaka MJ, Oh LS, Martin SD, Berkson EM. Telemedicine in the era of COVID-19: The virtual orthopaedic examination. J Bone Joint Surg Am 2020;102:e57.
18. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: Relationship to negative RT-PCR testing. Radiology 2020;296:E41-5.
19. Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): Astudy of 63 patients in Wuhan, China. Eur Radiol 2020;30:3306-9.
20. Shockwave Medicine Professional Committee of China Research Hospital Association. Guidelines for extracorporeal shockwave therapy for musculoskeletal diseases in China. Chin J Med Front 2019;11:1-10.
21. Gao F, Sun W, Xing G. Interpretation of the latest diagnosis and treatment consensus of the International Society of Medical Shockwaves: Indications and contraindications of extracorporeal shockwave. Chin Med J 2017;97:2411-5.
22. Chinese Medical Association Physical Medicine and Rehabilitation Branch, Expert Consensus Group on Extracorporeal Shockwave Therapy for Musculoskeletal Diseases. Expert Consensus on Extracorporeal Shockwave Therapy for Musculoskeletal Diseases. Chin J Phys Med Rehabil 2019;41:481-7.


How to Cite this article: Gao F, Ma X, Sun W, Li Z, Lu J | 2022 Chinese Expert Consensus Statement on the Management of Extracorporeal Shockwave Therapy in Musculoskeletal Disorders during Novel Coronavirus Pandemic Prevention and Control. | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 27-31.

[Full Text HTML] [Full Text PDF] [XML]

Shock Waves in Scaphoid Pseudarthrosis: A Case Series

Technical | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 39-42 | Paul German Terán1, Fidel Ernesto Cayon1, Estefania Anabel Lozada1, Alvaro Santiago Le Mari2

DOI: 10.13107/jrs.2022.v02.i01.47

Author: Paul German Terán [1], Fidel Ernesto Cayon [1], Estefania Anabel Lozada [1], Alvaro Santiago Le Marie [2]

[1] Department of Traumatology and Orthopedics, Orthopedic Specialties Center, Quito, Ecuador.

[2] Department of General and Laparoscopic Surgery, Universidad Internacional del Ecuador, Quito, Ecuador.

Address of Correspondence
Dr. Paul German Terán,
Department of Traumatology and Orthopedics, Orthopedic Specialties Center, Quito, Ecuador.
E-mail: paulteranmd@gmail.com


Scaphoid fracture accounts for 60% of carpal fractures. The mechanism of fracture occurs after a fall with the hand extended, in pronation and radial or ulnar deviation in addition to the importance, they gain for their frequency; clinically, their problem lies in the high possibility of non-consolidation, due to the type of vascularization that it has, fractures located mainly in the waist and in the proximal pole are a high-risk factor. Most of the up-to-date papers available confirm a positive outcome of the use of focused extracorporeal shock wave therapy (ESWT-F) in pseudarthrosis. According to the literature, the success rate is between 50% and 91%. Complications when ESWT-F are performed by qualified personnel and following the standards established by international scientific organizations, are limited to petechiae and local hematomas having as a requirement, to be performed by trained personnel. This manuscript will discuss a series of cases treated in a certified center for the application of Focal Shock Waves between 2018 and 2021 to patients with scaphoid fracture with a diagnosis of Fracture Consolidation Delay and pseudarthrosis of scaphoids, which subjected to treatment with high-intensity focal shock waves under ultrasound guidance. We analyzed six male patients with an average age of 31.3 years who were treated with ESWT-F. About 33.3% were taken to osteosynthesis as initial management without achieving satisfactory bone consolidation; hence, ESWT-F was performed. About 0% complications were reported, bone consolidation occurred in 100% of patients on average of 6 weeks from the last session of ESWT-F. The results were clinically evaluated, where 100% of patients manifested a decrease in pain by an average of 75% at 2 weeks of the last session of ESWT-F and 100% at 12 weeks. In the imaging evaluation, the six patients (100%) showed signs of bone consolidation in the complete radiological assessment at 12 weeks and the Disabilities of the Arm, Shoulder, and Hand scale applied revealed improvement in their functional capacity.

Keywords: Scaphoid non-union, Delayed union, Extracorporeal shockwave therapy, Extracorporeal shock wave therapy, Pseudarthrosis, Disabilities of the arm, shoulder and hand


1. Reigstad O, Thorkildsen R, Grimsgaard C, Melhuus K, Rokkum M. Examination and treatment of scaphoid fractures and pseudarthrosis. Tidsskr Nor Laegeforen 2015;135:1138-42.
2. Hernández PA, Arrieta DE, Lee Ruiz LS. Generalities of scaphoid fractures. Rev Med Sin 2020;5:e595.
3. Carreño F, Osma J. Orthopedics and Traumatology. Vol. 30. Amsterdam, Netherlands: Elsevier; 2016. p . 426-8. Available from: https://www.elsevier.es/es-revista-revista-colombiana-ortopedia-traumatologia-380-articulo-manguito-rotadores-epidemiologia-factores-riesgo-S0120884516300578. Last access on 2022.
4. Lee YM, Hwang ZO, Park JM, South YJ, Song SW. Double trapezia sign. Medicine (Baltimore) 2020;99:e22460.
5. Garcia AG. Fractures of the carpal scaphoid. Cir Cir 1953;21:199-206.
6. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
7. Schleusser S, Song J, Stang FH, Mailaender P, Kraemer R, Kisch T. Blood flow in the scaphoid is improved by focused extracorporeal shock wave therapy. Clin Orthop Relat Res 2020;478:127-35.
8. Figures VJ, Azócar SC, Sanhueza FM, Cavalla AP, Liendo VR. Arthroscopic management of scaphoid pseudoarthrosis with hump deformity: Surgical technique and case series. Rev Chil Ortop Traumatol 2019;60:47-57.
9. Vázquez JM, Galindo JC. Delay of consolidation and pseudoarthrosis of the scaphoid. Medigr Artemis 2007;3:259-68.
10. Vergara EM. Vascularized bone graft for the scaphoid. Investig Orig 2011;59:281.
11. Knobloch K. Extracorporeal magnetotransduction therapy (EMTT) and high-energetic focused extracorporeal shockwave therapy (ESWT) as bone stimulation therapy for metacarpal non-union a case report. Handchir Mikrochir Plast Chir 2021;53:82-6.

12. Fallnhauser T, Wilhelm P, Priol A, Windhofer C. High-energy extracorporeal shock wave therapy in delayed healing of scaphoid fractures and non-unions: Aretrospective analysis of the consolidation rate and factors relevant to therapy decisions. Handchir Microchir Plast Chir 2019;51:164-70.
13. Terán Vela P, Abarca WI, Martínez Asnalema D. Extracorporeal shock waves as a non-surgical treatment of delay of consolidation and non-bone union in diaphyseal fracture of the humerus associated with axonotmesis of the radial nerve, clinical case and literature review. Rev Ecu Med EUGENIO ESPEJO 2019;5:52-66.
14. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Poor results and complications in the use of focal shock waves and radial pressure waves in musculoskeletal pathology. Rehabilitation 2021;4:13-18.
15. D’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg 2015;24:147-53.
16. Wang CJ, Cheng JH, Huang CC, Yip HK, Russo S. Extracorporeal shockwave therapy for avascular necrosis of femoral head. Int J Surg 2015;24:184-7.
17. Cheng JH, Wang CJ. Biological mechanism of shockwave in bone. Int J Surg 2015;24:143-6.
18. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012;7:11.
19. Balius R, Jimenez F. Interventional Ultrasound in Sports Traumatology. I. Madrid; 2015. p. 2-4.


How to Cite this article: Teran PG, Cayon FE, Lozada EA, Le Marie AS | Shock Waves in Scaphoid Pseudarthrosis: A Case Series. | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 39-42.

[Full Text HTML] [Full Text PDF] [XML]

Treatment of a Femoral Shaft Non-union in a Pediatric Patient with Focused Shock Waves

Case Report | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 36-38 | Sebastián Senes1, Gerardo Staudacher2,  Santiago Iglesias1, Daniel Moya1, Rodolfo Goyeneche2

DOI: 10.13107/jrs.2022.v02.i01.45

Author: Sebastián Senes [1], Gerardo Staudacher [2],  Santiago Iglesias [1], Daniel Moya[1], Rodolfo Goyeneche [2]

[1] Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires, Argentina.

[2] Servicio de Ortopedia y Traumatología Infantil, Hospital de Pediatría Garrahan, Buenos Aires, Argentina.

Address of Correspondence
Dr. Daniel Moya, MD,
Hospital Británico de Buenos Aires, Perdriel 74, C1280 AEB, CABA, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Non-unions of the femur in children are not frequent, but when they do occur they can be very difficult to manage. Shock wave therapy has emerged as an effective option for well-chosen pseudoarthrosis cases, however there are no reports of pediatric cases. We report a 12-year-old male patient with a history of pathological fracture due to mid-diaphyseal osteomyelitis of the right femur at 8 years of age. After several surgical procedures the integrity of the femur was restored but an area of non-unions persisted at mid-diaphyseal level. He was treated with 3 sessions of focused shock waves with an electrohydraulic generator. He presented a rapid consolidation, avoiding a new endomedullary nailing surgery with bone graft.

Focused shock waves may be a useful therapeutic option in children with nonunions in well-selected cases.

Keywords: Pediatric, Fracture non-unions, Shock Waves


1. Lewallen RP, Peterson HA. Nonunion of long bone fractures in children: a review of 30 cases. J Pediatr Orthop. 1985 Mar-Apr;5(2):135-42. PMID: 3988913.

2. Rockwood, Charles A., Kaye E. Wilkins, James H. Beaty, and James R. Kasser. Rockwood and Wilkins’ Fractures in Children. Philadelphia: Lippincott Williams & Wilkins, 2001

3. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15(3):181-4. doi: 10.1007/BF00192289. PMID: 1743828.
4. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
5. Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M. Influence of shock waves on fracture healing. Urology. 1992 Jun;39(6):529-32. doi: 10.1016/0090-4295(92)90009-l. PMID: 1615601.
6. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997 Jul;158(1):4-11. doi: 10.1097/00005392-199707000-00003. PMID: 9186313.
7. Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res. 2001 Jun;(387):102-11. doi: 10.1097/00003086-200106000-00014. PMID: 11400870.
8. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res. 2001 Jun;(387):95-101. doi: 10.1097/00003086-200106000-00013. PMID: 11400901.
9. Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res. 2001 Jun;(387):90-4. doi: 10.1097/00003086-200106000-00012. PMID: 11400900.
10. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. JOrthop Trauma. 2010 Mar; 24(3):133-41.doi: 10.1097/BOT.0b013e3181b26470. PMID: 20182248.
11. Kuo SJ, Su IC, Wang CJ, Ko JY. Extracorporeal shockwave therapy (ESWT) in the treatment of atrophic non-unions of femoral shaft fractures. Int J Surg. 2015 Dec;24(Pt B):131-4. doi: 10.1016/j.ijsu.2015.06.075. Epub 2015 Jul 9. PMID: 26166737.
12. Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, Flamini S, Spacca G, Santilli V. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am. 2009 Nov;91(11):2589-97. doi: 10.2106/JBJS.H.00841. Erratum in: J Bone Joint Surg Am. 2010 May;92(5):1241. PMID: 19884432.
13. Notarnicola A, Moretti L, Tafuri S, Gigliotti S, Russo S, Musci L, Moretti B. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol. 2010 Aug;36(8):1306-13. doi: 10.1016/j.ultrasmedbio.2010.05.004. PMID: 20691920.
14. Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am. 2010 Apr;92(4):846-54. doi: 10.2106/JBJS.I.00653. PMID: 20360507.
15. W. Schaden, M. Pusch, C. Schwab, R. Mittermayr, H. Kuderna. Grundlagen der extrakorporalen Stoßwellentherapie (ESWT) bei Pseudarthrosen. Quality for the treated and practitioners. 47th Annual Meeting, Salzburg, Austria, 2011.
16. International Society for Medical Shockwave Treatment. Indications. https://www.shockwavetherapy.org/about-eswt/indications/ Last Access, June 15th,2022.


How to Cite this article: Senes S, Staudacher G, Iglesias S, Moya D, Goyeneche R | Treatment of a femoral shaft non-union in a pediatric patient with focused shock waves | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 36-38.

[Full Text HTML] [Full Text PDF] [XML]

Novel Extracorporeal Magnetotransduction Therapy with Magnetolith® and Focused Electromagnetic Extracorporeal Shockwave Therapy in Medial Meniscal Tear – A Case Report

Case Report | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 32-35 | Karsten Knobloch

DOI: 10.13107/jrs.2022.v02.i01.43

Author: Karsten Knobloch [1]

[1] Sport Praxis Prof. Knobloch, Hannover, Germany.

Address of Correspondence
Prof. Dr. Karsten Knobloch,
Heiligerstr. 3, Hannover – 30159, Germany.
E-mail: professor.knobloch@sportpraxis-knobloch.de


The case report describes a non-invasive combination of novel extracorporeal magnetotransduction therapy (EMTT) with focused extracorporeal shockwave therapy for symptomatic medial meniscal tear in a 41-year-old gentleman. Ultra-high-frequency 33 MHz ultrasound revealed a complex medial meniscal tear with a ganglion confirmed by subsequent magnetic resonance imaging. Non-invasive treatment with combined novel Magnetolith® EMTT with focused electromagnetic extracorporeal shockwave therapy for three sessions on a weekly interval. Shear wave elastography at 6 months demonstrated comparable stiffness of the healed and the healthy contralateral meniscus. The healing of the meniscal tear could be depicted by multiparametric ultra-high-frequency ultrasound (33 MHz) with novel stress testing and shear wave elastography.

Keywords: Magnetic field, Extracorporeal shockwave therapy, Extracorporeal shockwave therapy, Meniscal, Ultrasound, Pain


1. Avendaño-Coy J, Comino-Suárez N, Grande-Muñoz J, Avendaño-López C, Gómez-Soriano J. Extracorporeal shockwave therapy improves pain and function in subjects with knee osteoarthritis: A systematic review and meta-analysis of randomized clinical trials. Int J Surg 2020;82:64-75.
2. Bedewi MA, Elsifey AA, Saleh AK, Alfaifi T. Shear wave elastography of the knee menisci. J Int Med Res 2020;48:300060520976048.
3. Beutler S, Regel G, Pape HC, Machtens S, Weinberg AM, Kremeike I, et al. Extracorporeal shock wave therapy for delayed union of long bone fractures – Preliminary results of a prospective cohort study. Unfallchirurg 1999;102:839-47.
4. Lu CC, Chou SH, Shen PC, Chou PH, Ho ML, Tien YC. Extracorporeal shock wave promotes activation of anterior cruciate ligament remnant cells and their paracrine regulation of bone marrow stromal cells’ proliferation, migration, collagen synthesis, and differentiation. Bone Joint Res 2020;9:458-68..
5. d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg 2015;24:147-53.
6. Gollmann-Tepeköylü C, Pölzl L, Graber M, Hirsch J, Nägele F, Lobenwein D, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovasc Res 2020;116:1226-36.
7. Hashimoto S, Ichinose T, Ohsawa T, Koibuchi N, Chikuda H. Extracorporeal shockwave therapy accelerates the healing of a meniscal tear in the avascular region in a rat model. Am J Sports Med 2019;47:2937-44.
8. Hsu CC, Cheng JH, Wang CJ, Ko JY, Hsu SL, Hsu TC. Shockwave therapy combined with autologous adipose-derived mesenchymal stem cells is better than with human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells on knee osteoarthritis. Int J Mol Sci 2020;21:1217.
9. Knobloch K. Novel extracorporeal magnetotransduction therapy with Magnetolith and high-energy focused electromagnetic extracorporeal shockwave therapy as bone stimulation therapy for scaphoid nonunion – A case report. Med Case Rep Study Protoc 2020;2:1.
10. Knobloch K. Extracorporeal magnetotransduction therapy (EMTT) and high-energetic focused extracorporeal shockwave therapy (ESWT) as bone stimulation therapy for metacarpal non-union – A case report. Handchir Mikrochir Plast Chir 2021;53:82-6.
11. Knobloch K. Bone stimulation 4.0 – Combination of EMTT & EMTT in humerus nonunion. Unfallchirurg 2022;125:323-6.
12. Klüter T, Krath A, Stukenberg M, Gollwitzer H, Harrasser N, Knobloch K, et al. Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial. Electromagn Biol Med 2018;37:175-83.
13. Kopf S, Beaufils P, Hirschmann MT, Rotigliano N, Ollivier M, Pereira H, et al. Management of traumatic meniscus tears: The 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 2020;28:1177-94.
14. Krath A, Klüter T, Stukenberg M, Zielhardt P, Gollwitzer H, Harrasser N, et al. Electromagnetic transduction therapy in non-specific low back pain: A prospective randomised controlled trial. J Orthop 2017;14:410-5.
15. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. Am J Sports Med 2007;35:1756-69.
16. Moretti B, Notarnicola A, Garofalo R, Moretti L, Patella S, Marlinghaus E, et al. Shock waves in the treatment of stress fractures. Ultrasound Med Biol 2009;35:1042-9.
17. Ouyang J, Zhang B, Kuang L, Yang P, Du X, Qi H, et al. Pulsed electromagnetic field inhibits synovitis via enhancing the efferocytosis of macrophages. Biomed Res Int 2020;2020:4307385.
18. Pölzl L, Nägele F, Hirsch J, Graber M, Grimm M, Gollmann-Tepeköylü C, et al. Exosome isolation after in vitro shock wave therapy. J Vis Exp 2020;(163). doi: 10.3791/61508.
19. Riley DS, Barber MS, Kienle GS, Aronson JK, von Schoen-Angerer T, Tugwell P, et al. CARE guidelines for case reports: Explanation and elaboration document. J Clin Epidemiol 2017;89:218-35.
20. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT) – First choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
21. Kim SH, Lee HJ, Jang YH, Chun KJ, Park YB. Diagnostic accuracy of magnetic resonance imaging in the detection of type and location of meniscus tears: Comparison with arthroscopic findings. J Clin Med 2021;10:606.
22. Tang X, Coughlin D, Ballatori A, Berg-Johansen B, Waldorff EI, Zhang N, et al. Pulsed electromagnetic fields reduce interleukin-6 expression in intervertebral disc cells via nuclear factor-κβ and mitogen-activated protein kinase p38 pathways. Spine (Phila Pa 1976) 2019;44:E1290-7.
23. Wesdorp MA, Eijgenraam SM, Meuffels DE, Bierma-Zeinstra SM, Kleinrensink GJ, Bastiaansen-Jenniskens YM, et al. Traumatic meniscal tears are associated with meniscal degeneration. Am J Sports Med 2020;48:2345-52.
24. Willems A, van der Jagt OP, Meuffels DE. Extracorporeal shock wave treatment for delayed union and nonunion fractures: Asystematic review. J Orthop Trauma 2019;33:97-103.
25. Zhao Z, Wang Y, Wang Q, Liang J, Hu W, Zhao S, et al. Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo. Stem Cell Res Ther 2021;12:19.


How to Cite this article: Knobloch K | Novel Extracorporeal Magnetotransduction Therapy with Magnetolith® and Focused Electromagnetic Extracorporeal Shockwave Therapy in Medial Meniscal Tear – A Case Report | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 32-35.

[Full Text HTML] [Full Text PDF] [XML]

Extracorporeal Shockwave Treatment for Managing Biofilm-mediated Infections in Dentistry: Current Knowledge and Future Perspectives

Review Article | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 22-26 | Antonia Olivares, Christina M A P Schuh, Sebastian Aguayo

DOI: 10.13107/jrs.2022.v02.i01.39

Author: Antonia Olivares [1], Christina M A P Schuh [2], Sebastian Aguayo [1,3]

[1] School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.

[2] Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.

[3] Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.

Address of Correspondence
Dr. Sebastian Aguayo,
School of Dentistry and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
E-mail: sebastian.aguayo@uc.cl


At present, chronic non-communicable diseases are becoming more prevalent across the world. Among these pathologies, oral diseases such as dental caries and periodontitis are some of the most frequently observed in populations worldwide. These biofilm-mediated infections are produced as a consequence of a series of factors that modify the oral microenvironment and lead to dysbiosis among residing biofilms, which are particularly difficult to treat with pharmacological approaches due to their structural and anatomical characteristics. Furthermore, the recent sharp increase in antimicrobial resistance has potentiated the need for the development of novel techniques to effectively treat biofilm-mediated diseases in the mouth. One option that has recently shown promising results in vitro is the use of focused high-energy extracorporeal shockwave therapy (fhESWT) for the control of microbial growth and biofilm formation. Several studies have shown the effect of fhESWT on the treatment of biofilm-mediated infections associated with bone fractures and orthopedic implant infection, although the mechanisms behind this effect are still unknown. Regarding the oral cavity, there remains a lack of clinical studies but there are some limited in vitro and in vivo investigations that shed light on the potential of fhESWT for biofilm control. Therefore, the objective of this review is to discuss the most relevant available literature regarding the in vitro and in vivo effects of fhESWT over biofilm control, as well as the potential use of fhESWT for the treatment of oral biofilm-mediated diseases in the future.

Keywords: Bacteria, Biofilms, Extracorporeal shockwave therapy, Focused high-energy extracorporeal shockwave therapy, Fungi, Microorganisms.


1. Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol 2019;23:122-8.
2. Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: Aneed to act. J Intern Med 2014;276:98-110.
3. Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, et al. Oral biofilm architecture on natural teeth. PLoS One 2010;5:e9321.
4. Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. J Dent Res 2009;88:982-90.
5. Aguayo S, Donos N, Spratt D, Bozec L. Nanoadhesion of Staphylococcus aureus onto titanium implant surfaces. J Dent Res 2015;94:1078-84.
6. Schmidlin PR, Müller P, Attin T, Wieland M, Hofer D, Guggenheim B. Polyspecies biofilm formation on implant surfaces with different surface characteristics. J Appl Oral Sc 2013;21:48-55.
7. Simon-Soro A, Ren Z, Krom BP, Hoogenkamp MA, Cabello-Yeves PJ, Daniel SG, et al. Polymicrobial aggregates in human saliva build the oralbiofilm. mBio 2022;13:e0013122.
8. Aguayo S, Bozec L. Mechanics of bacterial cells and initial surface colonisation. In: Leake MC, editor. Biophysics of Infection. Cham: Springer. International Publishing; 2016. p. 245-60.
9. Avilés-Reyes A, Miller JH, Lemos JA, Abranches J. Collagen-binding proteins of Streptococcus mutans and related streptococci. Mol Oral Microbiol 2017;32:89-106.
10. Álvarez S, Leiva-Sabadini C, Schuh CM, Aguayo S. Bacterial adhesion to collagens: Implications for biofilm formation and disease progression in the oral cavity. Crit Rev Microbiol 2021;48:1-13.
11. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015;7:493-512.
12. Souza JG, Costa RC, Sampaio AA, Abdo VL, Nagay BE, Castro N, et al. Cross-kingdom microbial interactions in dental implant-related infections: Is Candida albicans a new villain? iScience 2022;25:103994.
13. Wan SX, Tian J, Liu Y, Dhall A, Koo H, Hwang G. Cross-kingdom cell-to-cell interactions in cariogenic biofilm initiation. J Dent Res 2021;100:74-81.
14. Digel I, Kern I, Geenen EM, Akimbekov N. Dental plaque removal by ultrasonic toothbrushes. Dent J (Basel) 2020;8:28.
15. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio 2018;9:e02331-17.
16. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Prim 2017;3:17030.
17. Singhrao SK, Harding A, Poole S, Kesavalu L, Crean SJ. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm 2015;2015:137357.
18. Sousa V, Nibali L, Spratt D, Dopico J, Mardas N, Petrie A, et al. Peri-implant and periodontal microbiome diversity in aggressive periodontitis patients: Apilot study. Clin Oral Implants Res 2017;28:558-70.
19. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012;10:717-25.
20. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018;392:1789-858.
21. Jin LJ, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis 2016;22:609-19.
22. Kazeminia M, Abdi A, Shohaimi S, Jalali R, Vaisi-Raygani A, Salari N, et al. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: A systematic review and meta-analysis. Head Face Med 2020;16:22.
23. Petersen PE, Ogawa H. The global burden of periodontal disease: Towards integration with chronic disease prevention and control. Periodontol 2000 2012;60:15-39.
24. Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol 2020;120:45-84.
25. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis a review. Head Face Med 2014;10:34.
26. Millsop JW, Fazel N. Oral candidiasis. Clin Dermatol 2016;34:487-94.

27. Aguayo S, Marshall H, Pratten J, Bradshaw D, Brown JS, Porter SR, et al. Early adhesion of Candida albicans onto dental acrylic surfaces. J Dent Res 2017;96:917-23.
28. Grigalauskienė R, Slabšinskienė E, Vasiliauskienė I. Biological approach of dental caries management. Stomatologija 2015;17:107-12.
29. Jirau-Colón H, González-Parrilla L, Martinez-Jiménez J, Adam W, Jiménez-Velez B. Rethinking the dental amalgam dilemma: An integrated toxicological approach. Int J Environ Res Public Health 2019;16:1036.
30. Fischer RG, Lira R Jr., Retamal-Valdes B, de Figueiredo LC, Malheiros Z, Stewart B, et al. Periodontal disease and its impact on general health in Latin America. Section V: Treatment of periodontitis. Braz Oral Res 2020;34:e026.
31. Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. Sci Rep 2020;10:5254.
32. Kuang X, Chen V, Xu X. Novel approaches to the control of oral microbial biofilms. Biomed Res Int 2018;2018:6498932.
33. Leiva-Sabadini, C, Alvarez, S, Barrera NP, Schuh CM, Aguayo S. Antibacterial effect of honey-derived exosomes containing antimicrobial peptides against oral streptococci. Int J Nanomed 2021;16:4891-900.
34. Ogden JA, Tóth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res 2001;387:8-17.
35. Mirea A, Onose G, Padure L, Rosulescu E. Extracorporeal shockwave therapy (ESWT) benefits in spastic children with cerebral palsy (CP). J Med Life 2014;7:127-32.
36. Chaussy CG. The history of shockwave lithotripsy. In: Patel SR, Moran ME, Nakada SY, editors. The History of Technologic Advancements in Urology. Cham: Springer International Publishing; 2018. p. 109-21.
37. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma 2010;24:133-41.
38. Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 2001;387:90-4.
39. Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 2011;253:1024-32.
40. Wang CJ, Cheng JH, Kuo YR, Schaden W, Mittermayr R. Extracorporeal shockwave therapy in diabetic foot ulcers. Int J Surg 2015;24:207-9.
41. Puetzler J, Milstrey A, Everding J, Raschke M, Arens D, Zeiter S, et al. Focused high-energy extracorporeal shockwaves as supplemental treatment in a rabbit model of fracture-related infection. J Orthop Res 2020;38:1351-8.
42. Qi X, Zhao Y, Zhang J, Han D, Chen C, Huang Y, et al. Increased effects of extracorporeal shock waves combined with gentamicin against Staphylococcus aureus biofilms in vitro and in vivo. Ultrasound Med Biol 2016;42:2245-52.
43. Milstrey A, Rosslenbroich S, Everding J, Raschke MJ, Richards RG, Moriarty TF, et al. Antibiofilm efficacy of focused high-energy extracorporeal shockwaves and antibiotics in vitro. Bone Joint Res 2021;10:77-84.
44. Datey A, Thaha CS, Patil SR, Gopalan J, Chakravortty D. Shockwave therapy efficiently cures multispecies chronic periodontitis in a humanized rat model. Front Bioeng Biotechnol 2019;7:382.


How to Cite this article: Olivares A, Schuh CMAP, Aguayo S | Extracorporeal Shockwave Treatment for Managing Biofilm-mediated Infections in Dentistry: The Current Knowledge and Future Perspectives | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 22-26.

[Full Text HTML] [Full Text PDF] [XML]

State of the Art in Ultrasound-Guided Surgery: Concept, Planning, Instruments, Classifications, Indications, and Literature Review

Review Article | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 16-21 | Bernáldez Domínguez Pedro, Dallo Lazzarini Ignacio
DOI: 10.13107/jrs.2022.v02.i01.37

Author: Bernáldez Domínguez Pedro [1], Dallo Lazzarini Ignacio [1]

[1] Department of Orthopaedic Surgery and Sports Medicine, SportMe Medical Center, Unit of Biological Therapies and Ultrasounds, Seville, Spain.

Address of Correspondence
Dr. Bernáldez Domínguez Pedro, Md. PhD,
Tabladilla, 2, 41013, Seville, Spain.
E-mail: pedrobernaldez@gmail.com


Musculoskeletal ultrasound (MSK-U) and ultrasound-guided interventionism have had significant development and use in clinical practice in recent decades, including minimally invasive surgical procedures assisted by ultrasound. In the current literature, there is no consensus on the terminology of these procedures, with several terms used such as ultrasound-assisted surgery, ultrasound-guided surgery (UGS) or echo-guided surgery, sonosurgery, percutaneous ultrasound-guided procedures, and ultra-minimally invasive UGS. The MSK-U allows us to diagnose musculoskeletal injuries, but it is also a handy tool to assist us when performing different therapies on the tissues. They are procedures that require a good learning curve but that, once achieved, will allow us to develop other techniques depending on the type of pathology, obtaining good clinical results and in many cases avoiding having to open the focus or expand the surgical wound, with the advantages that this supposes. Therefore, UGS allows us to locate the exact site of the injury, understand the dynamics of the pathology; it does not need to open a wide surgical field, sometimes we will not put stitches or staples, and it can be combined with arthroscopic or endoscopic procedures (Ultrasound and Arthroscopic-guided Surgery). In this article, we describe the concept of UGS, its planning, the necessary instruments, the different indications, and a current concept review on the subject.

Keywords: Ultrasound-guided surgery, ultrasound-guided interventionism, ultrasound-assisted surgery, sonosurgery, ultrasound-arthroscopic surgery.


1. Domínguez B. The ultrasound: The stethoscope of the Traumatologist: Diagnostic and therapeutic utility. Rev Traum Ort 2017;34:17-26.
2. Vo JN, Hoffer Fa, Shaw DW. Pediatric image-guided nonvascular musculoskeletal interventions. Tech Vasc Interv Radiol 2010;13:214-21.
3. Sconfienza LM, Adriaensen M, Albano D, Alcala-Galiano A, Allen G, Gómez MB, et al. Clinical indications for image-guided interventional procedures in the musculoskeletal system: A Delphi-based consensus paper from the European society of musculoskeletal radiology (ESSR)-part V, knee. Eur Radiol 2022;32(3):1438-1447.
4. Dietrich CF, Goudie A, Chiorean L, Cui XW, Gilja OH, Dong Y, et al. Point of care ultrasound: A WFUMB position paper. Ultrasound Med Biol 2017;43:49-58.
5. Domínguez PB. Bridging the Gap between Surgical and Conservative Treatment. The SUBA Protocol (Sports, Ultrasound, Biologics, Arthroscopy). TOBI (The Orthobiologic Institute) Conference; 2021.
6. Goto K, Saku I. Ultrasound-guided arthroscopic communication enlargement surgery may be an ideal treatment option for popliteal cysts indications and technique. J Exp Orthop 2020;7:93.
7. Rojo-Manaute JM, Capa-Grasa A, Chana-Rodríguez F, Perez-Mañanes R, Rodriguez-Maruri G, Sanz-Ruiz P, et al. Ultra-minimally invasive ultrasound-guided carpal tunnel release: A randomized clinical trial. J Ultrasound Med 2016;35:1149-57.
8. Buncke G, McCormack B, Bodor M. Ultrasound-guided carpal tunnel release using the manos CTR system. Microsurgery 2013;33:362-6.
9. de la Fuente J, Miguel-Perez MI, Balius R, Guerrero V, Michaud J, Bong D. Minimally invasive ultrasound-guided carpal tunnel release: A cadaver study. J Clin Ultrasound 2013;41:101-7.
10. Lecoq B, Hanouz N, Vielpeau C, Marcelli C. Ultrasound-guided percutaneous surgery for carpal tunnel syndrome: A cadaver study. Joint Bone Spine 2011;78:516-8.
11. Apard T, Candelier G. Surgical ultrasound-guided carpal tunnel release. Hand Surg Rehabil 2017;36:333-7.
12. Smith J, Rizzo M, Lai JK. Sonographically guided percutaneous first annular pulley release: Cadaveric safety study of needle and knife techniques. J Ultrasound Med 2010;29:1531-42.
13. Yamamoto M, Kurimoto S, Okui N, Tatebe M, Shinohara T, Hirata H. Sonography-guided arthroscopy for wrist ganglion. J Hand Surg Am 2012;37:1411-5.
14. Peck E, Ely E. Successful treatment of de Quervain tenosynovitis with ultrasound-guided percutaneous needle tenotomy and platelet-rich plasma injection: Acase presentation. PM R 2013;5:438-41.
15. Sakellariou VI, Brault J, Rizzo M. Ultrasound-assisted percutaneous needle fasciotomy for Dupuytren’s contracture. Orthopedics 2015;38:299-303.
16. Willberg L, Sunding K, Forssblad M, Alfredson H. Ultrasound- and Doppler-guided arthroscopic shaving to treat Jumper’s knee: A technical note. Knee Surg Sports Traumatol Arthrosc 2007;15:1400-3.
17. Sunding K, Willberg L, Werner S, Alfredson H, Forssblad M, Fahlström M. Sclerosing injections and ultrasound-guided arthroscopic shaving for patellar tendinopathy: good clinical results and decreased tendon thickness after surgery-a medium-term follow-up study. Knee Surg Sports Traumatol Arthrosc 2015;23:2259-68.
18. Alfredson H. Ultrasound and Doppler-guided mini-surgery to treat midportion Achilles tendinosis: Results of a large material and a randomised study comparing two scraping techniques. Br J Sports Med 2011;45:407-10.
19. Alfredson H, Ohberg L, Zeisig E, Lorentzon R. Treatment of midportion Achilles tendinosis: Similar clinical results with US and CD-guided surgery outside the tendon and sclerosing polidocanol injections. Knee Surg Sports Traumatol Arthrosc 2007;15:1504-9.
20. Nasr P, Berman L, Rehm A. Ultrasonographic findings after Achilles tenotomy during ponseti treatment for clubfeet: Is ultrasound a reliable tool to assess tendon healing? J Child Orthop 2014;8:405-11.
21. Giannetti S, Patricola AA, Stancati A, Santucci A. Intraoperative ultrasound assistance for percutaneous repair of the acute Achilles tendon rupture. Orthopedics 2014;37:820-4.
22. Bisaccia M, Rinonapoli G, Meccariello L, Bisaccia O, Ceccarini P, Rollo G, et al. Validity and reliability of mini-invasive surgery assisted by ultrasound in achilles tendon rupture. Acta Inform Med 2019;27:40-4.
23. Severyns M, Andriamananaivo T, Rollet ME, Kajetanek C, Lopes R, Renard G, et al. Acute achilles tendon rupture: Ultrasonography and endoscopy-assisted percutaneous repair. Arthrosc Tech 2019;8:e489-93.
24. Lacoste S, Féron JM, Cherrier B. Percutaneous Tenolig(®) repair under intra-operative ultrasonography guidance in acute Achilles tendon rupture. Orthop Traumatol Surg Res 2014;100:925-30.
25. Debrule MB. Ultrasound-guided weil percutaneous plantar fasciotomy. J Am Podiatr Med Assoc 2010;100:146-8.
26. Yoo SH, Cha JG, Lee BR. Ultrasound-guided percutaneous bone drilling for the treatment of lateral epicondylitis. Eur Radiol 2018;28:390-7.
27. Koh JS, Mohan PC, Howe TS, Lee BP, Chia SL, et al. Fasciotomy and surgical tenotomy for recalcitrant lateral elbow tendinopathy: Early clinical experience with a novel device for minimally invasive percutaneous microresection. Am J Sports Med 2013;41:636-44.
28. Barnes DE, Beckley JM, Smith J. Percutaneous ultrasonic tenotomy for chronic elbow tendinosis: A prospective study. J Shoulder Elbow Surg 2015;24:67-73.
29. Sconfienza LM, Mauri G, Messina C, Aliprandi A, Secchi F, Sardanelli F, et al. Ultrasound-guided percutaneous tenotomy of biceps tendon: Technical feasibility on cadavers. Ultrasound Med Biol 2016;42:2513-7.
30. Hirahara AM, Andersen WJ. Ultrasound-guided percutaneous reconstruction of the anterolateral ligament: Surgical technique and case report. Am J Orthop (Belle Mead NJ) 2016;45:418-60.
31. Delforge S, Lecoq B, Hulet C, Marcelli C. Coracoacromial ligament section under ultrasonographic control: A cadaveric study on 20 cases. Orthop Traumatol Surg Res 2014;100:e167-70.
32. Balius R, Bong DA, Ardèvol J, Pedret C, Codina D, Dalmau A. Ultrasound-guided fasciotomy for anterior chronic exertional compartment syndrome of the leg. J Ultrasound Med 2016;35:823-9.
33. Villanueva M, Iborra A, Sanz-Ruiz P, Noriega C. Ultrasound-guided surgery for lateral snapping hip: A novel ultraminimally invasive surgical technique. J Orthop Surg Res 2021;16:322.
34. Pilecki Z, Pilecki G, Ciekalski J, Dzielicki J, Jakubowski W. The advantages of combining sonotopogram with indication and fixation in invasive ultrasound. J Ultrason 2012;12:299-306.
35. Talbot M, Harvey EJ, Reindl R, Martineau P, Schneider P. Ultrasound-assisted external fixation: A technique for austere environments. J R Army Med Corps 2016;162:456-9.
36. Hardman HD, Smyth TW, Semo JJ, Rowan CC, DʼErcole FJ. Ultrasound-guided regional anesthesia and standard of care. Reg Anesth Pain Med 2018;43:107.
37. Souto MT, Fantoni DT, Hamaji A, Hamaji M, Vendruscolo CP, Otsuki DA, et al. Ultrasound-guided continuous block of median and ulnar nerves in horses: Development of the technique. Vet Anaesth Analg 2020;47:405-13.
38. Jobe CM, Zuckerman LM. Ultrasound-assisted posterior knee arthroscopy: A description of the technique. J Ultrasound Med 2021;40:1949-53.
39. Pilecki, Z, Koczy B, Mielnik M, Pilecki G, Dzielicki J, Jakubowski W. Basic dissecting techniques in ultrasound-guided surgery. J Ultrason 2014;14:171-8.
40. Finnoff JT, Hall MM, Adams E, Berkoff D, Concoff AL, Dexter W, et al. American medical society for sports medicine position statement: Interventional musculoskeletal ultrasound in sports medicine. Clin J Sport Med 2015;25:6-22.
41. Dallo I, Morales M, Gobbi A. Platelets and adipose stroma combined for the treatment of the arthritic knee. Arthrosc Tech 2021;10:e2407-14.
42. Dallo I, Szwedowski D, Mobasheri A, Irlandini E, Gobbi A. Aprospective study comparing leukocyte-poor platelet-rich plasma combined with hyaluronic acid and autologous microfragmented adipose tissue in patients with early knee osteoarthritis. Stem Cells Dev 2021.
43. Finnoff JT, Berkoff D, Brennan F, DiFiori J, Hall MM, Harmon K, et al. American medical society for sports medicine recommended sports ultrasound curriculum for sports medicine fellowships. Br J Sports Med 2015;49:145-50.


How to Cite this article: Pedro BD, Ignacio DL | State of the Art in Ultrasound-Guided Surgery: Concept, Planning, Instruments, Classifications, Indications, and Literature Review. | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 16-21.

[Full Text HTML] [Full Text PDF] [XML]

Lower Extremity Stress Fractures: General Concepts and Treatment with Focal Shock Waves and Radial Pressure Waves

Literature Review | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 09-15 | Antonia Olivares, Christina M A P Schuh, Sebastian Aguayo

DOI: 10.13107/jrs.2022.v02.i01.35

Author: Osvaldo Valle Toledo [1]

[1] Department of Orthopedic Surgeon, Ankle and Foot Team, MEDS Clinic, Santiago de Chile; President of ACHITOC
(Chilean Association of Tissue Engineering and Shock Waves).

Address of Correspondence
Dr. Osvaldo Valle Toledo,
Department of Orthopedic Surgeon, Ankle and Foot Team, MEDS Clinic, Santiago de Chile; President of ACHITOC
(Chilean Association of Tissue Engineering and Shock Waves).
E-mail: osvaldo.valle@meds.cl



1. Carlín AG, Garza JI, Parada CA. Fracturas porestrés enelatleta: Epidemiología y manejo. Orthotips 2016;12:12-27.
2. Devas MB: Stress fractures of the tibia in athletes or shin soreness. J Bone Joint Surg Br 1958;40-B:227-39.
3. Carlos L, D’Agostino C, Garcia SG, Fernandez A. Current concepts of shockwave therapy in stress fractures. Int J Surg 2015;24:195-200.
4. Fredericson M, Jennings F, Beaulieu C, Matheson GO. Stress fractures in athletes. Top Magn Reson Imaging 2006;17:309-25.
5. Saunier J, Chapurlat R. Stress fracture in athletes. Joint Bone Spine 2018;85:307-10.
6. Sandoval JC, Huamán LV, Cruz-Vargas JA. Factors associated with stress fracture: A case-control study in a peruvian navy medical center. Medwave 2020;20:e7936.
7. Changstrom BG, Brou L, Khodaee M, Braund C, Comstock RD. Epidemiology of stress fracture injuries among US high school athletes, 2005-2006 through 2012-2013. Am J Sports Med 2015;43:26-33.
8. Waterman BR, Gun B, Bader JO, Orr JD, Belmont PJ Jr. Epidemiology of lower Extremity stress fractures in the united states military. Mil Med 2016;181:1308-13.
9. Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: Gender differences in muscle and bone susceptibility factors. Bone 2000;27:437-44.
10. Wentz L, Liu PY, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: A systemic review. Mil Med 2011;176:420-30.
11. Kelsey JL, Bachrach LK, Procter-Gray E, Nieves J, Greendale GA, Sowers M, et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc 2007;39:1457-63.
12. Smith PJ, Gerrie BJ, Varner KE, McCulloch PC, Lintner DM, Harris JD. Incidence and prevalence of musculoskeletal injury in ballet: A systematic review. Orthop J Sport Med 2015;3:2325967115592621.
13. Sobrino FJ, Guillén P. Overuse injuries in professional ballet: Influence of age and years of professional practice. Orthop J Sport Med 2017:32.
14. Jotwani VM, Aflatooni JO, Barter LE, Harris JD. Management of stress fractures in ballet. J Am Acad Orthop Surg 2022;30:543-53.
15. Del Río Martínez PS, García MS, Berges MP, Rubio PB. Fractura de estrés en metatarsos: A propósito de dos casos. Rev Osteoporos Metab Miner 2015;7:67-70.
16. Pecina MM, Bojanic I. Overuse Injuries of the Musculoskeletal. 2nd ed. Boca Raton: CRC Press; 2004. p. 421.
17. Barrow G, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med 1988;16:209-16.
18. Boyden TW, Pamenter RW, Stanforth P, Rotkis T, Wilmore JH. Sex steroids and endurance running in women. Fertil Steril 1983;39:629-32.
19. Warden SJ, Creaby MW, Bryant AL, Crossley KM. Stress fracture risk factors in female football players and their clinical implications. Br J Sports Med 2007;41:i38-43.
20. Girasole G, Jilka R, Passer G, Boswell S, Boder G, Williams DC. 17beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: A potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest 1992;89:883-91.
21. Torrengo F, Paús V, Cédola J. Fracturas por estrés en deportistas algoritmo de estudios complementarios actualizado y estadificación. Rev Asoc Argentina De Traumatol Deporte 2010;17:18-23.
22. Taylor D, Kuiper JH. The prediction of stress fractures using a “stressed volumen” concept. J Orthop Res 2001;19:919-26.
23. Thomas JJ, Keel PK, Heatherton TF. Disordered eating and injuries among adolescent ballet dancers. Eat Weight Disord 2011;16:e216-22.
24. Lakmini Bulathsinhala, Julie M Hughes, Craig J McKinnon, Joseph R Kardouni, Katelyn I Guerriere, Kristin L Popp, Ronald W Matheny Jr, Mary L Bouxsein.. Risk of Stress Fracture Varies by Race/Ethnic Origin in a Cohort Study of 1.3 Million US Army Soldiers. First. JBMR. 3131 2017:32:1546-53.
25. Bennell K, Matheson G, Meeuwisse W, Brukner P. Risk factors for stress fractures. Sports Med 1999;28:91-122.
26. Vaitkevicius H, Witt R, Maasdam M, Walters K, Gould M, Mackenzie S, et al. Ethnic differences in titratable acid excretion and bone mineralization. Med Sci Sports Exerc 2002;34:295-302.
27. Varley I, Greeves JP, Sale C, Friedman E, Moran DS, Yanovich R, et al. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury. Purinergic Signal 2016;12:103-13.
28. Vera AM, Peterson LE, Dong D, Haghshenas V, Yetter TR, Delgado DA, et al. High prevalence of connective tissue gene variants in professional ballet. Am J Sports Med 2020;48:222-8.
29. Loud KJ, Micheli LJ, Bristol S, Austin SB, Gordon CM. Family history predicts stress fracture in active female adolescents. Pediatrics 2007;120:e364-72.
30. Kim JH, Jung ES, Kim CH, Youn H, Kim HR. Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. J Exerc Nutrition Biochem 2014;18:205-14.
31. Amorim T, Duraes C, Machado JC, Metsios GS, Wyon M, Maia J, et al. Genetic variation in Wnt/ b-catenin and ER signalling pathways in female and male elite dancers and its associations with low bone mineral density: Acrosssection and longitudinal study. Osteoporos Int 2018;29:2261-74.
32. Denay KL. Stress Fractures. Curr Sports Med Rep 2017;16:7-8.
33. Bennel KL, Brukner PD. Epidemiology and site specificity of stress fractures. Clin Sports Med 1997;16:179-96.
34. Hughes JM, Popp KL, Yanovich R, Bouxsein ML, Matheny RW Jr. The role of adaptive bone formation in the etiology of stress fracture. Exp Biol Med (Maywood) 2017;242:897-906.
35. Chapurlat RD, Delmas PD. Bone microdamage: A clinical perspective. Osteoporos Int 2009;20:1299-308.
36. D’Hemecourt PA, Zurakowski D, Kriemler S, Micheli LJ. Spondylolysis: Returning the athlete to sports participation with brace treatment. Orthopedics 2002;25:653-7.
37. Hetling T, Bourban P, Gojanovic B. Stress fracture and nonunion of coronoid process in a gymnast. Case Rep Orthop 2016;2016:9172483.
38. Van Demark RE Jr., Van Demark RE, Helsper E. Stress fracture of the hook of the hamate: Acase report. S D Med 2015;68:157-9, 161.
39. Jha SC, Sakai T, Hangai M, Toyota A, Fukuta S, Nagamachi A, et al. Stress fracture of the thoracic spine in an elite rhythmic gymnast: A case report. J Med Invest 2016;63:119-21.
40. Hashiguchi H, Iwashita S, Ohkubo A, Sawaizumi T, Takai S. Stress fracture of the radial styloid process in a judo player: A case report. J Nippon Med Sch 2015;82:109-12.
41. Park CJ, Suh KT, Lee SM, Cho HJ. Longitudinal stress fracture of the patella in a female weightlifter. J Orthop Sci 2016;21:241-4.
42. Low S, Kern M, Atanda A. First-rib stress fracture in two adolescent swimmers: Acase report. J Sports Sci 2016;34:1266-70.
43. Kiel J. Kimberly Kaiser Stress Reaction and Fractures In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022 [Last accessed on 2022 Jan May 13].
44. Kohring JM, Curtiss HM, Tyser AR. A scaphoid stress fracture in a female collegiate-level shot-putter and review of the literature. Case Rep Orthop 2016;2016:8098657.
45. Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD. The incidence and distribution of stress fractures in competitive track and field athletes. Atwelve-month prospective study. Am J Sports Med 1996;24:211-7.
46. Ohta-Fukushima M, Mutoh Y, Takasugi S, Iwata H, Ishii S. Characteristics of stress fractures in young athletes under 20 years. J Sports Med Phys Fitness 2002;42:198-206.
47. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995;23:472-81.
48. Patel DS, Roth M, Kapil N. Stress fractures: Diagnosis, treatment, and prevention. Am Fam Physician 2011;83:39-46.
49. Clement D, Ammann W, Taunton JE, Lloyd-Smith R, Jesperson D, McKay H, et al. Exercise-induced stress injuries to the femur. Int J Sports Med 1993;14:347-52.
50. Batt ME, Ugalde V, Anderson MW, Shelton DK. Aprospective controlled study of diagnostic imaging for acute shin splints. Med Sci Sports Exerc 1998;30:1564-71.
51. Escobar-de-las-Heras MN, Sevilla-Lerena MP, Ochoa-Prieto J. Fracturas por fatiga: Sospecha clínica y perseverancia diagnóstica. Med Familia Sermegen Dic 2010;10:590-2.
52. Moreira CA, Bilezikian JP. Stress fractures: Concepts and therapeutics. J Clin Endocrinol Metab 2017;102:525-34.
53. May T, Marappa-Ganeshan R. Stress fractures. Treasure Island FL: StatPearls. NIH National Library of Medicine; 2021.
54. Haffner N, Smolen D, Dahm F, Schaden W, Mittermayr R, Wang CJ, et al. Significance of extracorporeal shockwave therapy in fracture treatment. Transl Res Biomed 2018;6:42-63.
55. Wang CJ, Schaden W, Ko JY. Shockwave Medicine. Transl Res Biomed 2018;6:42-63.
56. Gross CE, Nunley NA 2nd. Navicular stress fractures. Foot Ankle Int 2015;36:1117-22.
57. Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg 2000;39:96-103.
58. Notarnincola A, Moretti B. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. Muscles Ligaments Tendons J 2012;2:33-7.
59. Kaiser PB, Guss D, DiGiovanni CW. Fractures of the foot and ankle in athletes. Foot Ankle Orthop. 2018;(3):1.
60. Torg JS, Balduini FC, Zelko RR, Pavlov H, Peff TC. Fractures of the base of the fifth metatarsal distal to the tuberosity: Classification and guidelines for non-surgical and surgical management. J Bone Joint Surg Am 1984;66:209-14.
61. Coughlin MJ, Saltzman CL, Mann RA. Mann’s Surgery of the Foot and Ankle E-Book: Expert Consult-Online. Philadelphia, PA: Saunders, Elsevier; 2013.
62. Quill GE Jr. Fractures of the proximal fifth metatarsal. Orthop Clin North Am. 1995;26:353-61.
63. Wheeler P, Batt ME. Do non-steroidal anti-inflammatory drugs adversely af-fect stress fracture ealing? A short review. Br J Sports Med 2005;39:65-9.
64. Roche M, Abrams G, Fredericson M. Systemic Treatment Modalities for Stress Fractures. United States: Stanford University Stanford University; 2020. p. 141-9.
65. Biagio M, Notarnicola A, Garofalo R, Moretti L, Patella S, Marlinghaus E, et al. Shock Waves in the treat-ment of stress fractures. Ultrasound Med Biol 2009;35:1042-9.
66. Tanaka K, Kanamori A, Kajiwara M, Nishino T, Nishida Y, Yamazak M. Extracorporeal shock wave therapy (ESWT) for refractory fractures at the fifth metatarsal base. Int J Foot Ankle 2019;3:27.
67. Schaden W. DIGEST Guidelines to the Extracorporeal Shock Wave Therapy ISMST (The International Society for Medical Schockwaves Treat-ment) Updated 05/2019.
68. Kertzman P, Császár NB, Furia JP, Schmitz C. Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: A retrospective case series. J Orthop Surg Res 2017;12:164.
69. Leal C, Berumen E, Bucci S, Castillo A. Extracorporeal shockwave therapy and sports-related injuries. Transl Res Biomed 2018;6:70-86.



How to Cite this article: Toledo OV | Lower Extremity Stress Fractures: General Concepts and Treatment with Focal Shock Waves and Radial Pressure Waves. | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 09-15.

[Full Text HTML] [Full Text PDF] [XML]

Very Low and Low-energetic Extracorporeal Shock Wave Treatment of Spasticity in Children and Adults – A Systematic Review

Systematic Review | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 03-08 | Karsten Knobloch, Henning Lohse-Busch, Andreas Gohritz, Tomas Nedelka

DOI: 10.13107/jrs.2022.v02.i01.33

Author: Karsten Knobloch [1], Henning Lohse-Busch [2], Andreas Gohritz [3], Tomas Nedelk [4,5]

[1] Department of Sports Medicine, SportPraxis Prof. Knobloch, Hannover, Germany.

[2] Zentrum für Bewegungsstörungen, Rheintalklinik Bad Krozingen, Germany.

[3] Department of Neurology, Universitätsspital Basel, Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Suisse.

[4] Department of Neurology, Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.

[5] Department of Neurology, Czech Technical University, Faculty of Biomedical Engineering, Kladno, Czech Republic.

Address of Correspondence
Prof. Dr. Karsten Knobloch,
SportPraxis Prof. Knobloch, Heiligerstr. 3, D-30159 Hannover, Germany.
E-mail: professor.knobloch@sportpraxis-knobloch.de


Introduction: This systemic review aims to assess the modes and treatment parameters of radial and focused extracorporeal shockwave therapy (ESWT) in spasticity based on the technologies and energy levels involved.
Materials and Methods: 1086 patients from 31 randomized-controlled trials (RCT) or cohort studies are included. 300 children were studied in seven studies (3 RCTs) with two radial and four focused electromagnetic ESWT devices and 14 studies with 443 patients using focused ESWT (electrohydraulic 46 patients, electromagnetic 367 patients, and piezoelectric 30 patients).
Results: In electromagnetic focused ESWT 8 RCTs (n = 323 patients) and three cohort studies (n = 44) used either very low-energetic (0.03–0.05 mJ/mm2) with 1500–2000 shots and 4–5 Hz with 3–5 focused sessions, or low-energetic 0.07–0.12 mJ/mm2 with 1500–2000 shots with 4–5 Hz and 1–3 sessions. The 64 children in the five electromagnetic focused trials were treated with very low-energetic 0.03 mJ/mm2, 1500 shots, and three sessions. 17 studies (n = 687) were using radial technologies with 7 RCTs (n = 349) and ten cohort studies (n = 338). Among the 17 trials, four studies (1 RCT, 3 cohort studies) included 236 children treated with either very low-energetic 0.6–1 bar (two trials) or low-energetic 1.5–3 bar with 5–10 Hz. Energy-wise three radial studies were very low-energetic 0.6–1 bar and 14 studies applied low-energetic radial pressures 1.5–3 bar. Notably, the frequency was mainly 4–8 Hz in the radial studies.
Conclusion: Both, radial and focused very low- to low-energetic ESWT improve function and reduce spasticity significantly. Adverse effects were not noted with the applied very low- to low-energetic device parameters neither among children nor in adults.

Keywords: Spasticity, Extracorporeal shock wave therapy, Extracorporeal shockwave therapy, Children.


1. Lohse-Busch H, Kraemer M, Reime U. A pilot investigation into the effects of extracorporeal shock waves on muscular dysfunction in children with spastic movement disorders. Schmerz 1997;11:108-12.
2. Lohse-Busch H, Kraemer M, Reime U. The use of extracorporeal shock wave fronts for treatment of muscle dysfunction of various etiologies: An overview of first results. In: Siebert, Buch , editors. Extracorporeal Shock Waves in Orthopaedics. New York, Tokyo: Springer Verlag Berlin Heidelberg; 1998. p. 215-30.
3. Riedel M, Falland R, Sailer-Kramer B, Lohse-Busch H. Komplexbehandlung mit manueller medizin und physiotherapie bei zerebral bewegungsgestörten kindern. Man Med Osteopath Med 2001;39:72-8.
4. Lohse-Busch H. Extrakorporale Stoßwellen. In: Lohse-Busch H, Riedel M, Graf Baumann T, editors. Das Therapeutische Angebot Für Bewegungsgestörte Kinder. New York: Springer Verlag Berlin Heidelberg; 2000. p. 257-74.
5. Oh JH, Park HD, Han SH, Shim GY, Choi KY. Duration of treatment effect of extracorporeal shock wave on spasticity and subgroup-analysis according to number of shocks and application site: A meta-analysis. Ann Rehabil Med 2019;43:163-77.
6. Lee JY, Kim SN, Lee IS, Jung H, Lee KS, Koh SE. Effects of extracorporeal shock wave therapy on spasticity in patients after brain injury: Ameta-analysis. J Phys Ther Sci 2014;26:1641-7.
7. Cabanas-Valdés R, Calvo-Sanz J, Urrùtia G, Serra-Llobet P, Pérez-Bellmunt A, Germán-Romero A. The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: A systematic review and meta-analysis. Top Stroke Rehabil 2020;27:137-57.
8. Xiang J, Wang W, Jiang W, Qian Q. Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: Asystematic review and meta-analysis of randomized controlled trials. J Rehabil Med 2018;50:852-9.
9. Dymarek R, Ptaszkowski K, Ptaszkowska L, Kowal M, Sopel M, Taradaj J, et al. Shock waves as a treatment modality for spasticity reduction and recovery improvement in post-stroke adults – Current evidence and qualitative systematic review. Clin Interv Aging 2020;15:9-28.
10. Liu DY, Zhong DL, Li J, Jin RJ. The effectiveness and safety of extracorporeal shock wave therapy (ESWT) on spasticity after upper motor neuron injury: Aprotocol of systematic review and meta-analysis. Medicine (Baltimore) 2020;99:e18932.
11. Corrado B, Di Luise C, Servodio Iammarrone C. Management of muscle spasticity in children with cerebral palsy by means of extracorporeal shockwave therapy: A systematic review of the literature. Dev Neurorehabil 2021;24:1-7.
12. Park DS, Kwon DR, Park GY, Lee MY. Therapeutic effect of extracorporeal shock wave therapy according to treatment session on gastrocnemius muscle spasticity in children with spastic cerebral palsy: A pilot study. Ann Rehabil Med 2015;39:914-21.
13. El-Shamy SM, Eid MA, El-Banna MF. Effect of extracorporeal shock wave therapy on gait pattern in hemiplegic cerebral palsy: A randomized controlled trial. Am J Phys Med Rehabil 2014;93:1065-72.

14. Picelli A, La Marchina E, Gajofatto F, Pontillo A, Vangelista A, Filippini R, et al. Sonographic and clinical effects of botulinum toxin Type A combined with extracorporeal shock wave therapy on spastic muscles of children with cerebral palsy. Dev Neurorehabil 2017;20:160-4.
15. Amelio E, Manganotti P. Effect of shock wave stimulation on hypertonic plantar flexor muscles in patients with cerebral palsy: A placebo-controlled study. J Rehabil Med 2010;42:339-43.
16. Lin Y, Wang G, Wang B. Rehabilitation treatment of spastic cerebral palsy with radial extracorporeal shock wave therapy and rehabilitation therapy. Medicine (Baltimore) 2018;97:e13828.
17. Wang T, Du L, Shan L, Dong H, Feng J, Kiessling MC, et al. A prospective case-control study of radial extracorporeal shock wave therapy for spastic plantar flexor muscles in very young children with cerebral palsy. Medicine (Baltimore) 2016;95:e3649.
18. Mirea A, Onose G, Padure L, Rosulescu E. Extracorporeal shockwave therapy (ESWT) benefits in spastic children with cerebral palsy (CP). J Med Life 2014;7:127-32.
19. Gonkova MI, Ilieva EM, Ferriero G, Chavdarov I. Effect of radial shock wave therapy on muscle spasticity in children with cerebral palsy. Int J Rehabil Res 2013;36:284-90.
20. Santamato A, Micello MF, Panza F, Fortunato F, Logroscino G, Picelli A, et al. Extracorporeal shock wave therapy for the treatment of poststroke plantar-flexor muscles spasticity: A prospective open-label study. Top Stroke Rehabil 2014;21 Suppl 1:S17-24.
21. Sohn MK, Cho KH, Kim YJ, Hwang SL. Spasticity and electrophysiologic changes after extracorporeal shock wave therapy on gastrocnemius. Ann Rehabil Med 2011;35:599-604.
22. Lee CH, Lee SH, Yoo JI, Lee SU. Ultrasonographic evaluation for the effect of extracorporeal shock wave therapy on gastrocnemius muscle spasticity in patients with chronic stroke. PM R 2019;11:363-71.
23. Wu YT, Yu HK, Chen LR, Chang CN, Chen YM, Hu GC. Extracorporeal shock waves versus botulinum toxin type A in the treatment of poststroke upper limb spasticity: A randomized noninferiority trial. Arch Phys Med Rehabil 2018;99:2143-50.
24. Taheri P, Vahdatpour B, Mellat M, Ashtari F, Akbari M. Effect of extracorporeal shock wave therapy on lower limb spasticity in stroke patients. Arch Iran Med 2017;20:338-43.
25. Yoon SH, Shin MK, Choi EJ, Kang HJ. Effective site for the application of extracorporeal shock-wave therapy on spasticity in chronic stroke: Muscle belly or myotendinous junction. Ann Rehabil Med 2017;41:547-55.
26. Santamato A, Notarnicola A, Panza F, Ranieri M, Micello MF, Manganotti P, et al. SBOTE study: Extracorporeal shock wave therapyversus electrical stimulation after botulinum toxin type a injection for post-stroke spasticity – A prospective randomized trial. Ultrasound Med Biol 2013;39:283-91.
27. Manganotti P, Amelio E. Long-term effect of shock wave therapy on upper limb hypertonia in patients affected by stroke. Stroke 2005;36:1967-71.
28. Troncati F, Paci M, Myftari T, Lombardi B. Extracorporeal Shock Wave Therapy reduces upper limb spasticity and improves motricity in patients with chronic hemiplegia: A case series. NeuroRehabilitation 2013;33:399-405.
29. Moon SW, Kim JH, Jung MJ, Son S, Lee JH, Shin H, et al. The effect of extracorporeal shock wave therapy on lower limb spasticity in subacute stroke patients. Ann Rehabil Med 2013;37:461-70.
30. Radinmehr H, Ansari NN, Naghdi S, Tabatabaei A, Moghimi E. Comparison of therapeutic ultrasound and radial shock wave therapy in the treatment of plantar flexor spasticity after stroke: A prospective, single-blind, randomized clinical trial. J Stroke Cerebrovasc Dis 2019;28:1546-54.
31. Marinelli L, Mori L, Solaro C, Uccelli A, Pelosin E, Currà A, et al. Effect of radial shock wave therapy on pain and muscle hypertonia: A double-blind study in patients with multiple sclerosis. Mult Scler 2015;21:622-9.
32. Vidal X, Morral A, Costa L, Tur M. Radial extracorporeal shock wave therapy (rESWT) in the treatment of spasticity in cerebral palsy: A randomized, placebo-controlled clinical trial. NeuroRehabilitation 2011;29:413-9.
33. Li TY, Chang CY, Chou YC, Chen LC, Chu HY, Chiang SL, et al. Effect of radial shock wave therapy on spasticity of the upper limb in patients with chronic stroke: A prospective, randomized, single blind, controlled trial. Medicine (Baltimore) 2016;95:e3544.
34. Wu YT, Chang CN, Chen YM, Hu GC. Comparison of the effect of focused and radial extracorporeal shock waves on spastic equinus in patients with stroke: A randomized controlled trial. Eur J Phys Rehabil Med 2018;54:518-25.
35. Dymarek R, Taradaj J, Rosińczuk J. The effect of radial extracorporeal shock wave stimulation on upper limb spasticity in chronic stroke patients: A single-blind, randomized, placebo-controlled study. Ultrasound Med Biol 2016;42:1862-75.
36. Megna M, Marvulli R, Farì G, Gallo G, Dicuonzo F, Fiore P, et al. Pain and muscles properties modifications after botulinum toxin type A (BTX-A) and radial extracorporeal shock wave (rESWT) combined treatment. Endocr Metab Immune Disord Drug Targets 2019;19:1127-33.
37. Kim YW, Shin JC, Yoon JG, Kim YK, Lee SC. Usefulness of radial extracorporeal shock wave therapy for the spasticity of the subscapularis in patients with stroke: Apilot study. Chin Med J (Engl) 2013;126:4638-43.
38. Sawan S, Abd-Allah F, Hegazy MM, Farrag MA, El-Den NH. Effect of shock wave therapy on ankle plantar flexors spasticity in stroke patients. NeuroRehabilitation 2017;40:115-8.
39. Radinmehr H, Nakhostin Ansari N, Naghdi S, Olyaei G, Tabatabaei A. Effects of one session radial extracorporeal shockwave therapy on post-stroke plantarflexor spasticity: A single-blind clinical trial. Disabil Rehabil 2017;39:483-90.
40. Kim TG, Bae SH, Kim GY, Kim KY. The effects of extracorporeal shock wave therapy on stroke patients with plantar fasciitis. J Phys Ther Sci 2015;27:523-6.
41. Dymarek R, Taradaj J, Rosińczuk J. Extracorporeal shock wave stimulation as alternative treatment modality for wrist and fingers spasticity in poststroke patients: A prospective, open-label, preliminary clinical trial. Evid Based Complement Alternat Med 2016;2016:4648101.
42. Daliri SS, Forogh B, Emami Razavi SZ, Ahadi T, Madjlesi F, Ansari NN. A single blind, clinical trial to investigate the effects of a single session extracorporeal shock wave therapy on wrist flexor spasticity after stroke. NeuroRehabilitation 2015;36:67-72.
43. Amelio E, Manganotti P. Effect of Shock Wave Therapy in Patients Affected by Stroke with Upper Limb Spasticity: Neurophysiologic and Clinical Study. International Federation of Societies for Surgery of the Hand; 2004. p. 535-40.
44. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet 1980;2:1265-8.
45. Louwerens JK, Sierevelt IN, Kramer ET, Boonstra R, van den Bekerom MP, van Royen BJ, et al. Comparing ultrasound-guided needling combined with a subacromial corticosteroid injection versus high-energy extracorporeal shockwave therapy for calcific tendinitis of the rotator cuff: A randomized controlled trial. Arthroscopy 2020;36:1823-33.e1.
46. Wang YC, Chen SJ, Huang PJ, Huang HT, Cheng YM, Shih CL. Efficacy of different energy levels used in focused and radial extracorporeal shockwave therapy in the treatment of plantar fasciitis: A meta-analysis of randomized placebo-controlled trials. J Clin Med 2019;8:1497.


How to Cite this article: Knobloch K, Lohse-Busch H, Gohritz A, Nedelka T | Very Low and Low-energetic Extracorporeal Shock Wave Treatment of Spasticity in Children and Adults–A Systematic Review. | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 03-08.

[Full Text HTML] [Full Text PDF] [XML]

An Invitation to the 24th World Congress of the International Society for Medical Shockwave Treatment

Editorial | Vol 2 | Issue 1 |  Jan – Jun 2022 | page: 01-02 | Tomáš Nedělka1,2,3, Petra Poklopová1,3, Jakub Katolický1,3

DOI: 10.13107/jrs.2022.v02.i01.031

Author: Tomáš Nedělka [1,2,3], Petra Poklopová [1,3], Jakub Katolický [1,3]

[1] Czech Technical University Prague, Faculty of Biomedical Engineering, Prague, Czech Republic.

[2] Charles University Prague, 2nd Medical Faculty, Prague, Czech Republic.

[3] Charles University Prague, 2nd Medical Faculty, Prague, Czech Republic.

Address of Correspondence
Dr. Tomáš Nedělka, M.D., Ph.D,
Bělohorská 416/25, Prague 6, 169 00, Czech Republic.
E-mail: tnedelka@post.cz


The 24th World Congress of the International Society for Medical Shockwave Treatment (ISMST) is finally here! We are very excited to invite you to this wonderful event held in magical Prague, the heart of Europe between the 8th and the 10th of September 2022.

ISMST represents an inclusive communication platform, where top class speakers share their late research and news regarding clinical applications of the shockwave science. The program of this year’s 24th world congress has been uniquely structured to cover key applications of the shockwave therapy, namely, extracorporeal shockwave therapy (ESWT) and radial pressure waves (RPW) technology.

Leading specialists, world known physicians and physiotherapists will share their insights at this highly recognized educational and informative event. The first scientific session, called “New Horizons in Shockwave Medicine,” will be introduced on Friday the 9th by Prof. Johannes Holfeld.
He is the founder and head of Cardiac Regeneration Research Group (CARE) at Innsbruck Medical University, and he will present on the purpose of ESWT in Cardiac Surgery. Prof. Holfeld is also well known for development of shockwave therapy for myocardial regeneration. In addition, Prof. Karsten Knobloch will elaborate on the new horizons in shockwave medicine and discuss the “Brain lymphatic system and its implications for Transcranial Pulse Stimulation in Neurodegenerative Diseases,” which are a novel approach of ESWT use in neurodegenerative diseases and dementia. He will also discuss the topics of ESWT in football and esthetic medicine later in the day. Prof. Knobloch is a board-certified reconstructive and esthetic surgeon, hand surgeon, and general surgeon and also the current president of the German society for extracorporeal shockwave therapy (DIGEST). Another “new horizon” – namely, the dental pathologies – will be presented by Prof. Daniel Moya rom Argentina. There will be other amazing international speakers from USA, Germany, Austria, Taipei, Czech Republic, and Italy taking part of the topic with whom you may discuss your points of interest and this will be followed by a nice cup of coffee and refreshments.

The next sessions will be dedicated to “ESWT and Sports, ESWT in Neurology, ESWT in Skin and ESWT in Urology and Sexual Medicine.” The highlight of ESWT and Sports is the lecture by Prof. Heinz Lohrer who participated as the head team physician of the German Gymnastics Olympic Teams in Barcelona, Atlanta, and Sydney. Prof. Lohrer has won multiple international awards for his research and work. He will share his insights into the use of ESWT in the Olympic games. His presentation will be followed by shockwave specialists from South Korea, Germany, Columbia, Qatar, Malaysia, and UK to name a few. For those interested in Orthopedic Sport Medicine Arthroscopy and a wide range of tendon disorders, Prof. Nicola Maffulli is definitely an important speaker not to be missed.

In the second half of the day, Dr. Tomáš Nedělka, this year’s president of the International Society for Medical Shockwave Therapy congress, wil be presenting about the latest innovations in ESWT in Neurology. Prof. Reiner Mittermayr from Austria and Dr. Irwin Goldstein from USA will be leading the individual topics during the second half of the first day of the congress.

We are going to kick off day two of the ISMST with the topic of “RPW in Physiotherapy,” whereby the leading keynote speaker is also Prof. Heinz Lohrer. Other scientific sessions on the day include “Recent Development in Orthopedics and Traumatology” and “ESWT Pain Management.” Prof. Mittermayr and Prof. Gerdesmeyer will be leading the discussions on those key subjects, whereby all delegates are encouraged to participate in interesting discussions afterward. The day will be concluded by well-known Czech specialist in rehabilitation medicine Dr. Jiří Nedělka, successor of famous professor Janda, sharing more than 20 years of experience in combining Prague School of Manual Medicine and ESWT in various myofascial applications.

We have also prepared for you an instructional certification course (ICC) for medical doctors and physiotherapists, which will be held on September 8, 2022 on the congress site. This 1-day course will enhance your knowledge about the basics of technology, indications, contraindications, and practical application of ESWT and RPW. For your information, these courses are taught by high-ranking international lecturers with great knowledge and experience in ESWT. ICC for physiotherapists is focused on the use of RPW, and the course for physicians covers not only RPW but also focuses on ESWT, which is restricted to physicians use only. This course is certified after completing a final test at the end of the course.


Dr. Tomáš Nedělka

Dr. Petra Poklopová

Dr. Jakub Katolický



How to Cite this article: Nedělka T, Poklopová P, Katolický J. | An invitation to the 24th World Congress of the International Society for Medical Shockwave treatment.  | Journal of Regenerative Science | Jan – Jun 2022; 2(1):01-02.

  (Abstract    Full Text HTML)   (Download PDF)