Shock Waves in Scaphoid Pseudarthrosis: A Case Series

Technical | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 39-42 | Paul German Terán1, Fidel Ernesto Cayon1, Estefania Anabel Lozada1, Alvaro Santiago Le Mari2

DOI: 10.13107/jrs.2022.v02.i01.47

Author: Paul German Terán [1], Fidel Ernesto Cayon [1], Estefania Anabel Lozada [1], Alvaro Santiago Le Marie [2]

[1] Department of Traumatology and Orthopedics, Orthopedic Specialties Center, Quito, Ecuador.

[2] Department of General and Laparoscopic Surgery, Universidad Internacional del Ecuador, Quito, Ecuador.

Address of Correspondence
Dr. Paul German Terán,
Department of Traumatology and Orthopedics, Orthopedic Specialties Center, Quito, Ecuador.


Scaphoid fracture accounts for 60% of carpal fractures. The mechanism of fracture occurs after a fall with the hand extended, in pronation and radial or ulnar deviation in addition to the importance, they gain for their frequency; clinically, their problem lies in the high possibility of non-consolidation, due to the type of vascularization that it has, fractures located mainly in the waist and in the proximal pole are a high-risk factor. Most of the up-to-date papers available confirm a positive outcome of the use of focused extracorporeal shock wave therapy (ESWT-F) in pseudarthrosis. According to the literature, the success rate is between 50% and 91%. Complications when ESWT-F are performed by qualified personnel and following the standards established by international scientific organizations, are limited to petechiae and local hematomas having as a requirement, to be performed by trained personnel. This manuscript will discuss a series of cases treated in a certified center for the application of Focal Shock Waves between 2018 and 2021 to patients with scaphoid fracture with a diagnosis of Fracture Consolidation Delay and pseudarthrosis of scaphoids, which subjected to treatment with high-intensity focal shock waves under ultrasound guidance. We analyzed six male patients with an average age of 31.3 years who were treated with ESWT-F. About 33.3% were taken to osteosynthesis as initial management without achieving satisfactory bone consolidation; hence, ESWT-F was performed. About 0% complications were reported, bone consolidation occurred in 100% of patients on average of 6 weeks from the last session of ESWT-F. The results were clinically evaluated, where 100% of patients manifested a decrease in pain by an average of 75% at 2 weeks of the last session of ESWT-F and 100% at 12 weeks. In the imaging evaluation, the six patients (100%) showed signs of bone consolidation in the complete radiological assessment at 12 weeks and the Disabilities of the Arm, Shoulder, and Hand scale applied revealed improvement in their functional capacity.

Keywords: Scaphoid non-union, Delayed union, Extracorporeal shockwave therapy, Extracorporeal shock wave therapy, Pseudarthrosis, Disabilities of the arm, shoulder and hand


1. Reigstad O, Thorkildsen R, Grimsgaard C, Melhuus K, Rokkum M. Examination and treatment of scaphoid fractures and pseudarthrosis. Tidsskr Nor Laegeforen 2015;135:1138-42.
2. Hernández PA, Arrieta DE, Lee Ruiz LS. Generalities of scaphoid fractures. Rev Med Sin 2020;5:e595.
3. Carreño F, Osma J. Orthopedics and Traumatology. Vol. 30. Amsterdam, Netherlands: Elsevier; 2016. p . 426-8. Available from: Last access on 2022.
4. Lee YM, Hwang ZO, Park JM, South YJ, Song SW. Double trapezia sign. Medicine (Baltimore) 2020;99:e22460.
5. Garcia AG. Fractures of the carpal scaphoid. Cir Cir 1953;21:199-206.
6. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
7. Schleusser S, Song J, Stang FH, Mailaender P, Kraemer R, Kisch T. Blood flow in the scaphoid is improved by focused extracorporeal shock wave therapy. Clin Orthop Relat Res 2020;478:127-35.
8. Figures VJ, Azócar SC, Sanhueza FM, Cavalla AP, Liendo VR. Arthroscopic management of scaphoid pseudoarthrosis with hump deformity: Surgical technique and case series. Rev Chil Ortop Traumatol 2019;60:47-57.
9. Vázquez JM, Galindo JC. Delay of consolidation and pseudoarthrosis of the scaphoid. Medigr Artemis 2007;3:259-68.
10. Vergara EM. Vascularized bone graft for the scaphoid. Investig Orig 2011;59:281.
11. Knobloch K. Extracorporeal magnetotransduction therapy (EMTT) and high-energetic focused extracorporeal shockwave therapy (ESWT) as bone stimulation therapy for metacarpal non-union a case report. Handchir Mikrochir Plast Chir 2021;53:82-6.

12. Fallnhauser T, Wilhelm P, Priol A, Windhofer C. High-energy extracorporeal shock wave therapy in delayed healing of scaphoid fractures and non-unions: Aretrospective analysis of the consolidation rate and factors relevant to therapy decisions. Handchir Microchir Plast Chir 2019;51:164-70.
13. Terán Vela P, Abarca WI, Martínez Asnalema D. Extracorporeal shock waves as a non-surgical treatment of delay of consolidation and non-bone union in diaphyseal fracture of the humerus associated with axonotmesis of the radial nerve, clinical case and literature review. Rev Ecu Med EUGENIO ESPEJO 2019;5:52-66.
14. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Poor results and complications in the use of focal shock waves and radial pressure waves in musculoskeletal pathology. Rehabilitation 2021;4:13-18.
15. D’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg 2015;24:147-53.
16. Wang CJ, Cheng JH, Huang CC, Yip HK, Russo S. Extracorporeal shockwave therapy for avascular necrosis of femoral head. Int J Surg 2015;24:184-7.
17. Cheng JH, Wang CJ. Biological mechanism of shockwave in bone. Int J Surg 2015;24:143-6.
18. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012;7:11.
19. Balius R, Jimenez F. Interventional Ultrasound in Sports Traumatology. I. Madrid; 2015. p. 2-4.


How to Cite this article: Teran PG, Cayon FE, Lozada EA, Le Marie AS | Shock Waves in Scaphoid Pseudarthrosis: A Case Series. | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 39-42.

[Full Text HTML] [Full Text PDF] [XML]

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *