Shockwave Therapy and Anesthesia: What Evidence is there?

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 13-15 | Paulo Roberto Dias Santos, Bruno Schiefer Dos Santos, Nacime Salomao Barbachan Mansur DOI: 10.13107/jrs.2021.v01.i01.009

Author: Paulo Roberto Dias Santos [1], Bruno Schiefer Dos Santos [1], Nacime Salomao Barbachan Mansur [1,2]

[1] Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

[2] Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, Iowa.

 

Address of Correspondence:
Dr. Nacime Salomao Barbachan Mansur, MD, PhD.
Departamento de Ortopedia e Traumatologia, Disciplina de Ortopedia e Traumatologia, Escola Paulista de Medicina – Universidade Federal de São Paulo, Brazil.
E-mail: nacime@uol.com.br


Abstract

Introduction: The use of anesthetics on extracorporeal shockwave therapy (ESWT) for musculoskeletal disorders is a matter of debate. Although widely performed, especially on focal procedures, its scientific background is sparse. This study aims to review the current evidence
on the use of anesthetics in ESWT.
Methods: A literature review of the PubMed, Web of Science, Embase, EBSCO, and Cochrane Library databases was performed. Studies assessing or comparing the use of any type of anesthetic in any form of shockwave therapy were collected.

Results: After inclusion and exclusion criteria assessment, a total of seven studies were found to directly address the subject and only four were original articles.
Conclusion: The produced evidence is small and lacks methodological quality. These facts support the necessity for new studies using the present technology to determine the real effect of anesthetics on ESWT.

Level of Evidence: Level V. Literature Review

Keywords: Shock waves, Radial pressure waves, Quality standards


Reference:

  1. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012;7:11.
  2. Moya D, Ramon S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  3. Schmitz C, Csaszar NB, Milz S, Schieker M, Maffulli N, Rompe JD, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: A systematic review on studies listed in the PEDro database. Br Med Bull 2015;116:115-38.
  4. Korakakis V, Whiteley R, Tzavara A, Malliaropoulos N. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: A systematic review including quantification of patient-rated pain reduction. Br J Sports Med 2018;52:387-407..
  5. Schaden W, Thiele R, Kolpl C, Pusch M, Nissan A, Attinger CE, et al. Shock wave therapy for acute and chronic soft tissue wounds: A feasibility study. J Surg Res 2007;143:112.
  6. Barbachan Mansur NS, Matsunaga FT, Carrazzone OL, Dias dos Santos P, Schiefer Dos Santos B, Nunes CG, et al. Shockwave therapy plus eccentric exercises versus isolated eccentric exercises for achilles insertional tendinopathy: A double-blinded randomized clinical trial. J Bone Joint Surg Am 2021;103:1295-302.
  7. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–first choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
  8. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
  9. Treatment ISFMS. ISMST Guidelines. Italy: University of Florence; 2019.
  10. Rompe JD, Meurer A, Nafe B, Hofmann A, Gerdesmeyer L. Repetitive low-energy shock wave application without local anesthesia is more efficient than repetitive low-energy shock wave application with local anesthesia in the treatment of chronic plantar fasciitis. J Orthop Res 2005;23:931-41.
  11. Labek G, Auersperg V, Ziernhöld M, Poulios N, Böhler N. Influence of local anesthesia and energy level on the clinical outcome of extracorporeal shock wave-treatment of chronic plantar fasciitis. Z Orthop Ihre Grenzgeb 2005;143:240-6.
  12. Furia JP. High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am J Sports Med 2006;34:733-40.
  13. Klonschinski T, Ament SJ, Schlereth T, Rompe JD, Birklein F. Application of local anesthesia inhibits effects of low-energy extracorporeal shock wave treatment (ESWT) on nociceptors. Pain Med 2011;12:1532-7..
  14. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidences in shockwave treatment. SETOC (spanish society of shockwave treatment) recommendations. Rehabilitacion (Madr) 2021;55:291-300.
  15. Schultheiss R. Stoßwellen-technologie in orthop¨adie undunfallchirurgie. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D, editors. Die Stoßwelle. Forschung und Klinik. Germany: Attempto, Tubingen; 1995.
  16. Lohrer H, Nauck T, Korakakis V, Malliaropoulos N. Historical ESWT paradigms are overcome: A narrative review. Biomed Res Int 2016;2016:3850461.
  17. Maier M, Averbeck B, Milz S, Refior HJ, Schmitz C. Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 2003;406:237-45.
  18. Hausdorf J, Lemmens MA, Kaplan S, Marangoz C, Milz S, Odaci E, et al. Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res 2008;1207:96-101.
  19. Schmitz C, DePace R. Pain relief by extracorporeal shockwave therapy: An update on the current understanding. Urol Res 2009;37:231-4.
  20. Weber M, Birklein F, Neundorfer B, Schmelz M. Facilitated neurogenic inflammation in complex regional pain syndrome. Pain 2001;91:251-7.
  21. Hsieh ST, Lin WM. Modulation of keratinocyte proliferation by skin innervation. J Invest Dermatol 1999;113:579-86.
  22. Goto T, Yamaza T, Kido MA, Tanaka T. Light-and electron-microscopic study of the distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone. Cell Tissue Res 1998;293:87-93.
  23. Brain SD, Williams TJ. Substance P regulates the vasodilator activity of calcitonin gene-related peptide. Nature 1988;335:73-5.
  24. Fischer AA. Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain 1987;30:115-26.

 

 


How to Cite this article: Santos PRD, Dos Santos BS, Mansur NSB | Shockwave therapy and anesthesia: What evidence is there? | Journal of Regenerative Science | December 2021;1(1):13-15.

[Full Text HTML] [Full Text PDF] [XML]


Quality Standards and Techniques for the Application of Focused Shockwaves and Radial Pressure Waves in Musculoskeletal Disorders

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 9-12 | José Eid, Daniel Moya DOI: 10.13107/jrs.2021.v01.i01.007

Author: José Eid [1], Daniel Moya [2]

[1] Médico Assistente do corpo clínico do Hospital Hcor São Paulo, Brazil.

[2] Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.

Address of Correspondence:
Dr. José Eid, MD.
Médico Assistente do corpo clínico do Hospital Hcor São Paulo, Brazil.
E-mail: j.eid@uol.com.br


Abstract

Focused shockwaves and radial pressure waves are safe and effective if used correctly. Nevertheless, poor results and complications have been described due to missdiagnosis and technical errors. The aim of this review is to introduce the basic principles of quality and technical recommendations for each method.

Keywords: Shock waves, Radial pressure waves, Quality standards


Reference:

  1. Delius M, Brendel W. Historical roots of lithotripsy. J Lithotr Stone Dis 1990;2:161-3.
  2. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  3. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
  4. Novak P. Physics: F-SW and R-SW. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L, editors. Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 28-49.
  5. Consenso de la Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular Sobre las Bases Físicas de las Ondas de Choque Focales y de las Ondas de Presión Radial. Available from: https://onlat.net/?page_id=2497 [Last accessed on 2021 June 09].
  6. Eid J. ISMST Consensus Statement Terms and Definitions. https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/Consensus_MBRadial_pressure_wave_2017_SS.pdf [Last accessed on 2021 June 09].
  7. European Commission DG Health and Consumer. Medical Devices: Guidance document. Classification of medical devices. MEDDEV 2. 4/1. Available from: https://pdf4pro.com/download/medical-devices-guidance-document-6fa97.html [Last accessed on 2021 June 09].
  8. Digest Guidelines for Extracorporeal Shockwave Therapy. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/ISMST_Guidelines.pdf [Last accessed on 2021 June 09].
  9. Kibler WB. Value on the front end: Making the effective diagnosis for optimal treatment. Arthroscopy 2017;33:493-5.
  10. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Malos resultados y complicaciones en el uso de ondas de choque focales y ondas de presión radial en patología musculoesquelética [Poor results and complications in the use of focused shockwaves and radial pressure waves in musculoskeletal pathology]. Rehabilitacion (Madr) 2021;2021:00031-1.
  11. International Society for Medical Shockwave Treatment. Consensus Statement on ESWT Indications and Contraindications. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/ISMST_consensus_statement_on_indications_and_contraindications_20161012_final.pdf [Last accessed on 2021 June 09].
  12. Wright JG. Revised grades of recommendation for summaries or reviews of orthopaedic surgical studies. J Bone Joint Surg Am 2006;88:1161-2.
  13. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidences in shockwave treatment. SETOC (Spanish Society of Shockwave Treatment) recommendations. Rehabilitacion (Madr) 2021;55(4):291-300.
  14. Wang CJ, Huang HY, Yang K, Wang FS, Wong M. Pathome-chanism of shock wave injuries on femoral artery, vein andnerve. An experimental study in dogs. Injury. 2002;33:439-46.
  15. Buchbinder R, Ptasznik R, Gordon J, Buchanan J, Prabaharan V, Forbes A. Ultrasound-guided extracorporeal shock wave therapy for plantar fasciitis: A randomized controlled trial. JAMA. 2002;288:1364-72.
  16. Njawaya MM, Moses B, Martens D, Orchard JJ, Driscoll T, Negrine J, et al. Ultrasound guidance does not improve the results of shock wave for plantar fasciitis or calcific achilles tendinopathy: A randomized control trial. Clin J Sport Med 2018;28:21-7.
  17. Charrin JE, Noel ER. Shockwave therapy under ultrasonographic guidance in rotator cuff calcific tendinitis. Jt. Bone Spine 2001;68:241-4.
  18. Sabeti-Aschraf M, Dorotka R, Goll A, Trieb K. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff. Am J Sports 2005;33:1365-8.

 

How to Cite this article: Eid J, Moya D | Quality Standards and Techniques for the Application of Focused Shockwaves and Radial Pressure Waves in Musculoskeletal Disorders. | Journal of Regenerative Science | December 2021; 1(1): 9-12.

[Full Text HTML] [Full Text PDF] [XML]


Ultrasound Intervention Techniques in Patellar Tendinopathy: A Review

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 35-38 | Paul German Terán, Estefania Anabel Lozada, Juan Felipe Giraldo. DOI: 10.13107/jrs.2021.v01.i01.019

Author: Paul German Terán [1], Estefania Anabel Lozada [1], Juan Felipe Giraldo [2]

[1] Traumatología y Ortopedia, Centro de Especialidades Ortopédicas, Quito, Ecuador.

[2] Medicina del Deporte, Instituto Colombiano del Dolor INCODOL, Medellín, Antioquia, Colombia.

 

Address of Correspondence
Dr. Paul German Terán MD,
Traumatología y Ortopedia, Centro de Especialidades Ortopédicas, Quito, Ecuador.
E-mail: paulteranmd@gmail.com


Abstract

Patellar tendinopathy is a very common, yet very difficult pathology to treat. Its’ frequency in elite athletes, especially in jumping sports, can go as high as 14%. Recently it has been suggested that chronic tendinopathy may be an active process of ongoing tendon degeneration bearing close relation with inflammation-mediated responses, the intensity of pain in patellar tendinopathy appears to have a stronger relation with the number of newly formed blood vessels observed on Doppler ultrasound. This article is a descriptive review of the available information which was obtained during a 1-month period (September 2021) and the following search keywords were used: interventional ultrasonography; patellar ligament; tendinopathy. Based on the information obtained, a total of 787 articles were revied, mainly published in the last 10 years in Pubmed, Medline, and SciELO databases; out of these, a total of 15 articles were used as citations. Even though conservative treatment is preferred as a first-line treatment, if, during a 6-month period it fails, then surgical treatment is proposed; however, recovery time is a crucial issue for elite athletes. Treatment by ultrasound-guided interventionism is presented as an effective alternative and allows athletes to return to their regular activities in less time, with optimal results. In the literature there are not many articles that describe the various techniques of ultrasound-guided interventionism for the treatment of patellar tendinopathy, thus, we have carried out this bibliographic review.

Keywords: Interventional ultrasonography, Patellar ligament, Tendinopathy.


References:

1. Maffulli N, Del Buono A, Oliva F, Testa V, Capasso G, Maffulli G. High-volume image-guided injection for recalcitrant patellar tendinopathy in athletes. Clin J Sport Med 2016;26:12-6.
2. Willberg L, Sunding K, Forssblad M, Fahlström M, Alfredson H. Sclerosing polidocanol injections or arthroscopic shaving to treat patellar tendinopathy/jumper’s knee? A randomised controlled study. Br J Sports Med 2011;45:411-5.
3. Abat F, Diesel WJ, Gelber PE, Polidori F, Monllau JC, Sanchez-Ibañez JM. Effectiveness of the intratissue percutaneous electrolysis (EPI®) technique and isoinertial eccentric exercise in the treatment of patellar tendinopathy at two years follow-up. Muscles Ligaments Tendons J 2014;4:188-93.
4. Moura JL, Abreu FG, Queirós CM, Pisanu G, Clechet J, Vieira TD, et al. Ultrasound-guided electrocoagulation of neovessels for chronic patellar tendinopathy. Arthrosc Tech 2020;9:e803-7.
5. Fogli M, Giordan N, Mazzoni G. Efficacy and safety of hyaluronic acid (500-730kDa) ultrasound-guided injections on painful tendinopathies: A prospective, open label, clinical study. Muscles Ligaments Tendons J 2017;7:388-95.
6. Lee WC, Zhang ZJ, Masci L, Ng GY, Fu SN. Alterations in mechanical properties of the patellar tendon is associated with pain in athletes with patellar tendinopathy. Eur J Appl Physiol 2017;117:1039-45.
7. Rodriguez-Merchan EC. The treatment of patellar tendinopathy. J Orthop Traumatol 2013;14:77-81.
8. Wang JH, Iosifidis MI, Fu FH. Biomechanical basis for tendinopathy. Clin Orthop Relat Res 2006;443:320-32.
9. Hall MM, Rajasekaran S. Ultrasound-guided scraping for chronic patellar tendinopathy: A case presentation. PM R 2016;8:593-6.
10. Masci L, Alfredson H, Neal B, Bee WW. Ultrasound-guided tendon debridement improves pain, function and structure in persistent patellar tendinopathy: Short term follow-up of a case series. BMJ Open Sport Exerc Med 2020;6:e000803.

11. Nielsen TG, Miller LL, Mygind-Klavsen B, Lind M. High-volume image-guided injection in the chronic recalcitrant non-insertional patellar tendinopathy: A retrospective case series. J Exp Orthop 2020;7:80.
12. Crisp T, Khan F, Padhiar N, Morrissey D, King J, Jalan R, et al. High volume ultrasound guided injections at the interface between the patellar tendon and Hoffa’s body are effective in chronic patellar tendinopathy: A pilot study. Disabil Rehabil 2008;30:1625-34.
13. Morton S, Chan O, King J, Perry D, Crisp T, Maffulli N, et al. High volume image-guided Injections for patellar tendinopathy: A combined retrospective and prospective case series. Muscles Ligaments Tendons J 2014;4:214-9.
14. Balius R, Díaz FJ. Ecografía Intervencionista en Traumatología del Deporte. Madrid: Editorial Médica Panamericana; 2015. p. 146.
15. Abat F, Gelber PE, Polidori F, Monllau JC, Sanchez-Ibañez JM. Clinical results after ultrasound-guided intratissue percutaneous electrolysis (EPI®) and eccentric exercise in the treatment of patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc 2015;23:1046-52.

 


How to Cite this article: Terán PG, Lozada EA, Giraldo JF | Ultrasound intervention techniques in patellar tendinopathy: A review. | Journal of Regenerative Science | Dec 2021; 1(1): 35-38.

[Full Text HTML] [Full Text PDF] [XML]


New Trends in Ultrasound-Guided Musculoskeletal Injuries Approaches

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 30-34 | Bernáldez Domínguez Pedro, Dallo Lazzarini Ignacio. DOI: 10.13107/jrs.2021.v01.i01.017

Author: Bernáldez Domínguez Pedro [1], Dallo Lazzarini Ignacio [1]

[1] Department of Orthopaedic Surgery and Sports Medicine, SportMe Medical Center, Unit of Biological Therapies, Seville, Spain.

 

Address of Correspondence
Dr. Bernáldez Domínguez Pedro, MD
Tabladilla, 2, 41013, Seville, Spain.
E-mail: pedrobernaldez@gmail.com


Abstract

The ultrasound not only allows us to diagnose musculoskeletal injuries but is also a fantastic tool to assist us when performing different therapies on the tissues. Multiple studies compare the classic blind versus ultrasound-guided infiltrations, with a significant difference in the results. In this article, we present the different indications for ultrasound-guided therapies, including ultrasound-guided local infiltration, percutaneous needle tenotomy, intracapsular hydrodilatation, hydrodissection, high-volume injection, percutaneous needle scraping and ultrasound-guided surgery (EAS). We describe the techniques, their advantages, and disadvantages, as well as possible complications. These procedures require a good learning curve, but once achieved, it will allow us to use them to obtain good clinical results, and in many cases avoiding the operating room. We have included these therapies in the so-called “SUBA Protocol” that includes the application of the concepts of modern Sports trauma, the use of musculoskeletal Ultrasounds, consider Biological therapies as one more tool in the therapeutic arsenal, and finally, the use of Arthroscopic surgeries, minimally invasive procedures with minor tissue damage.

Keywords: Musculoskeletal ultrasound, Ultrasound-guided therapies, Percutaneous needle tenotomy, Intracapsular hydrodilatation,
Hydrodissection, Percutaneous needle scraping, Ultrasound-guided surgery, SUBA protocol.


References:

1. Domínguez B, Martos TA. El ecógrafo: El fonendo del Traumatólogo: Utilidad diagnostica y terapéutica. Rev S Traum Ort 2017;34:17-26.
2. De Zordo T, Lill SR, Fink C, Feuchtner GM, Jaschke W, Bellmann-Weiler R, et al. Real-time sonoelastography of lateral epicondylitis: Comparison of findings between patients and healthy volunteers. AJR Am J Roentgenol 2009;193:180-5.
3. Nazarian LN. The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to MRI. AJR Am J Roentgenol 2008;190:1621-6.
4. Daley EL, Bajaj S, Bisson LJ, Cole BJ. Improving injection accuracy of the elbow, knee, and shoulder: Does injection site and imaging make a difference? A systematic review. Am J Sports Med 2011;39:656-62.
5. Daniels EW, Cole D, Jacobs B, Phillips SF. Existing evidence on ultrasound-guided injections in sports medicine. Orthop J Sports Med 2018;6:2325967118756576.
6. Peck E, Jelsing E, Onishi K. Advanced ultrasound-guided interventions for tendinopathy. Phys Med Rehabil Clin N Am 2016;27:733-48.
7. Hall MM, Rajasekaran S. Ultrasound-guided scraping for chronic patellar tendinopathy: A case presentation. PM R 2016;8:593-6.
8. Patel R, Urits I, Wolf J, Murthy A, Cornett EM, Jones MR, et al. A comprehensive update of adhesive capsulitis and minimally invasive treatment options. Psychopharmacol Bull 2020;50 4 Suppl 1:91-107.
9. Lam KH, Hung CY, Chiang YP, Onishi K, Su DC, Clark TB, et al. Ultrasound-guided nerve hydrodissection for pain management: rationale, methods, current literature, and theoretical mechanisms. J Pain Res 2020;13:1957-68..
10. Boesen AP, Hansen R, Boesen MI, Malliaras P, Langberg H. Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion achilles tendinopathy: A randomized double-blinded prospective study. Am J Sports Med 2017;45:2034-43.

11. Tafti D, Byerly DW. Ultrasound Guided Barbotage. Treasure Island, FL: StatPearls Publishing; 2021.
12. Henning PT, Yang L, Awan T, Lueders D, Pourcho AM. Minimally invasive ultrasound-guided carpal tunnel release: Preliminary clinical results. J Ultrasound Med 2018;37:2699-706.
13. Gao L, Madry H, Chugaev DV, Denti M, Frolov A, Burtsev M, et al. Advances in modern osteotomies around the knee: Report on the association of sports traumatology, arthroscopy, orthopaedic surgery, rehabilitation (ASTAOR) Moscow International Osteotomy Congress 2017. J Exp Orthop 2019;6:9.
14. Sabeti-Aschraf M, Lemmerhofer B, Lang S, Schmidt M, Funovics PT, Ziai P, et al. Ultrasound guidance improves the accuracy of the acromioclavicular joint infiltration: A prospective randomized study. Knee Surg Sports Traumatol Arthrosc 2011;19:292-5.
15. Berkoff DJ, Miller LE, Block JE. Clinical utility of ultrasound guidance for intra-articular knee injections: A review. Clin Interv Aging 2012;7:89-95.
16. Aly AR, Rajasekaran S, Ashworth N. Ultrasound-guided shoulder girdle injections are more accurate and more effective than landmark-guided injections: A systematic review and meta-analysis. Br J Sports Med 2015;49:1042-9.
17. Wu T, Song HX, Dong Y, Li JH. Ultrasound-guided versus blind subacromial-subdeltoid bursa injection in adults with shoulder pain: A systematic review and meta-analysis. Semin Arthritis Rheum 2015;45:374-8.
18.Hoeber S, Aly AR, Ashworth N, Rajasekaran S. Ultrasound-guided hip joint injections are more accurate than landmark-guided injections: A systematic review and meta-analysis. Br J Sports Med 2016;50:392-6.
19. Domínguez MP. Bridging the Gap between Surgical and Conservative Treatment. The SUBA Protocol (Sports, Ultrasound, Biologics, Arthroscopy). TOBI (The Orthobiologic Institute) Conference; 2021.

 


How to Cite this article: Pedro BD, Ignacio DL | New Trends in Ultrasound-Guided Musculoskeletal Injuries Approaches. | Journal of Regenerative Science | Dec 2021; 1(1): 30-34.

[Full Text HTML] [Full Text PDF] [XML]


Shock Waves and Radial Pressure Waves: Time to Put a Clear Nomenclature into Practice

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 4-8 | Achim M. Loske, Daniel Moya DOI: 10.13107/jrs.2021.v01.i01.005

Author: Achim M. Loske [1], Daniel Moya [2]

[1] Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, Qro., 76230, México.

[2] Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.

Address of Correspondence:
Dr. Daniel Moya, MD
Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

Extracorporeal focused shock wave therapy and radial pressure wave therapy are noninvasive approaches with high success rates that hold promise for treating a rapidly increasing number of clinical indications. However, reports, presentations at scientific meetings, and information published by manufacturers reflect confusion in the terminology used. This situation is worrisome because both desired and undesired biological effects depend on the pressure profile and the physical parameters used. Moreover, in many cases, the detailed biological mechanisms involved are yet not fully understood. Only a clear knowledge of the physical concepts can enable comparison among and improvement of treatment protocols and technology. Fortunately, specific definitions and recommendations have been agreed upon by scientific societies promoting international standardization. The main goal of this article is to raise awareness of the importance of having a clear nomenclature worldwide and explain some of the concepts based on the international consensus that has been accepted to date.

Keywords: Shock waves, Radial pressure waves, Physical parameters .


Reference:

  1. Britannica, the Editors of Encyclopaedia. International System of Units. Encyclopedia Britannica, 30 Jul; 2020. Available from: https://www.britannica.com/science/International-System-of-Units [Last accessed on 2021 May 8].
  2. Metric Convention of 1875. US Metric Association. Available from: https://usma.org/laws-and-bills/metric-convention-of-1875 [Last accessed on 2021 May 8].
  3. Delius M, Brendel W. Historical roots of lithotripsy. J Lithotr Stone Dis 1990;2:161-3.
  4. Chaussy C, Eisenberger F, Forssmann B. Epochs in endourology; extracorporeal shockwave lithotripsy (ESWL): A chronology. J Endourol 2007;21:1249-53.
  5. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
  6. Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, et al. Guidelines on Urolithiasis. Arnhem, Netherlands: European Association of Urology; 2015. Available from: https://uroweb.org/wp-content/uploads/22-Urolithiasis_LR_full.pdf [Last accessed on 2021 May 8].
  7. Graff J, Richter KD, Pastor J. Effect of high energy shock waves on bony tissue. Urol Res 1988;16:252-8.
  8. Karpmann RR, Magee FP, Gruen TWS, Mobley T. The lithotriptor and its potential use in the revision of total hip arthroplasty. Orthop Rev 1987;16:38-42.
  9. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
  10. Rompe JD, Rumler F, Hopf C, Nafe B, Heine J. Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin Orthop Relat Res 1995;321:196-201.
  11. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 1997;158:4-11.
  12. Lohrer H, Gerdesmeyer L, editors. Shock wave therapy in practice. In: Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 50-69.
  13. Speed C. A systematic review of shockwave therapies in soft tissue conditions: Focusing on the evidence. Br J Sports Med 2014;48:1538-42.
  14. Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: Technology, mechanisms, and clinical efficacy. Wound Repair Regen 2012;20:456-65..
  15. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  16. Auersperg V. DIGEST Guidelines for Extracorporeal Shock Wave Therapy. Physics and Technology of ESWT. Available from: http://www.setoc.es/docs/DIGEST%20guidelines_June%202019_E_A.pdf [Last accessed on 2021 May 8].
  17. IEC 61846 International Standard Ultrasonics/Pressure Pulse Lithotripters/Characteristics of Fields. Vol. 18. Geneva, Switzerland: International Electrotechnical Commission; 1998.
  18. Ueberle F, Rad AJ. Ballistic pain therapy devices: Measurement of pressure pulse parameters. Biomed Tech 2012;57:700-3.
  19. International Society for Medical Shockwave Therapy: Physical principles of ESWT Basic Physical Principles. Available from: https://www.shockwavetherapy.org/about-eswt/physical-principles-of-eswt [Last accessed on 2021 May 8].
  20. Novak P. Physics: F-SW and R-SW. Shock wave therapy in practice. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L, editors. Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 28-49.
  21. Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular (Onlat) Ondas de Choque en Medicina: La Nueva Frontera. Available from: https://onlat.net/?page_id=2491 [Last accessed on 2021 May 8].
  22. European Commission DG Health and Consumer. Medical Devices: Guidance Document. Classification of medical devices. MEDDEV 2. 4/1 Rev. 9 June 2010. Available from: https://pdf4pro.com/download/medical-devices-guidance-document-6fa97.html [Last accessed on 2021 May 8].
  23. Eid J. ISMST Consensus Statement Terms and Definitions. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/Consensus_MBRadial_pressure_wave_2017_SS.pdf [Last accessed on 2021 May 8].
  24. Consenso de la Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular Sobre las Bases Físicas de las Ondas de Choque Focales y de las Ondas de Presión Radial. Available from: https://onlat.net/?page_id=2497 [Last accessed on 2021 May 8].
  25. Consensus Statement on ESWT Indications and Contraindications. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/ISMST_consensus_statement_on_indications_and_contraindications_20161012_final.pdf [Last accessed on 2021 May 8].
  26. Recommendation Statement of the Conjoint Physics Working Group of ISMST and DIGEST on ESWT study design and publication. ISMST Recommendations. Available from: https://www.shockwavetherapy.org/about-eswt/ismst-recommendations [Last accessed on 2021 May 8].
  27. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Ondas de choque. Evidencias y recomendaciones SETOC (Sociedad Española de Tratamientos con Ondas de Choque). Rehabilitación (Madr) 2021;55:291-300.
  28. Sociedade Médica Brasileira de Tratamento por Ondas de Choque. Physical Features. Available from: https://www.sbtoc.org.br/aspectos-fisicos [Last accessed on 2021 May 8].
  29. Deutschsprachige Internationale Gesellschaft für Extrakorporale Stoßwellentherapie: Technology, Technical Differences. Available from: https://www.digest-ev.de/gesellschaft/geschichte.html [Last accessed on 2021 May 8].

 


How to Cite this article: Loske AM, Moya D | Shock waves and radial pressure waves: time to put a clear nomenclature into practice. | Journal of Regenerative Science | December 2021; 1(1): 4-8.

[Full Text HTML] [Full Text PDF] [XML]


Case Report: Focused Shock Waves as a Treatment Option in Failed Rotator Cuff Calcification Surgery

Case Report | Volume 1 | Issue 1 | JRS December 2021 | Page 51-54 | Daniel Moya. DOI: 10.13107/jrs.2021.v01.i01.027

Author: Daniel Moya [1]

[1] Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires, Argentina.

Address of Correspondence
Dr. Daniel Moya, MD
Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

Introduction: Focused extracorporeal shock wave treatment has emerged as an alternative therapy before invasive procedures when conservative treatment has failed in rotator cuff calcifications. It can also be used when surgery has failed.
Case Report: We report a case of failed surgery in which focused shock waves were used for treatment. We applied three sessions of focused electromagnetic waves (Dornier Compact Alpha) with an energy level of 0.20 mJ/mm2, 2000 pulses per sesión, every 2 weeks. The pain gradually disappeared and mobility was regaining. The radiographic control 2 months after the last session showed the total disappearance of the calcification. The end result was the complete disappearance of the symptoms.
Conclusion: The effectiveness of shock waves, their non-invasiveness, safety, and cost efficiency justify their use both as an option before an invasive technique and when surgery has failed in the treatment of rotator cuff calcifications.
Keywords: Rotator cuff calcifications, Shock waves, Failed surgery.


References:

1. Bosworth BM. Calcium deposits in the shoulder and subacromial bursitis a survey of 12, 122 shoulders. JAMA1942;116:2477-82.
2. Ruttiman G. Uber die Haufigkeit rontgenologischer Veranderungen beiPatienten mit Typischer Periarthritis Humeroscapularis und Schultergesunden. Zurich: Inaugural Dissertation; 1959.
3. Codman EA. The Shoulder: Rupture of the Supraspinatus Tendon and Other Lesions in or About the Subacromial Bursa. Boston: Thomas Todd Company; 1934.
4. Hajiroussou VJ, Webley M. Familial calcific periarthritis. Ann Rheum Dis 1983;42:469-70.
5. De Sèze S, Welfling J. Tendinites calcifiantes. Rhumatologie 1970;22:45-50..
6. Sengar DP, McKendry RJ, Uhthoff HK. Increased frequency of HLA-A1 in calcifying tendinitis. Tissue Antigens 1987;29:173-4.
7. Oliva F, Barisani D, Grasso A, Maffulli N. Gene expression analysis in calcific tendinopathy of the rotator cuff. Eur Cell Mater 2011;21:548-57.
8. Chaudhury S, Carr AJ. Lessons we can learn from gene expression patterns in rotator cuff tears and tendinopathies. J Shoulder Elbow Surg 2012;21:191-9.
9. Herberts P, Kadefors R, Högfors C, Sigholm G. Shoulder pain and heavy manual labor. Clin Orthop Relat Res 1984;19:166-78.
10. Mavrikakis ME. Calcific shoulder periarthritis (tendinitis) in adult onset diabetes mellitus: Acontrolled study. J Bone Joint Surg 2005;87-B:162

11. Harvie P. Calcific tendinitis: Natural history and association with endocrine disorders. J Bone Joint Surg 2005;87-B:162.
12. Uhthoff HK, Sarkar K, Maynard JA. Calcifying tendinitis: Anew concept of its pathogenesis. Clin Orthop Relat Res 1976;118:164-8.

13. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
14. Neer CS. Shoulder Reconstruction. Philadelphia, PA: WB Saunders; 1990. p. 43.
15. Gschwend N, Patte D, Zippel J. Therapy of calcific tendinitis of the shoulder. Arch Orthop Unfallchir 1972;73:120-35.
16. Wittenberg RH, Rubenthaler F, Wölk T, Ludwig J, Willburger RE, Steffen R. Surgical or conservative treatment for chronic rotator cuff calcifying tendinitis-a matched-pair analysis of 100 patients. Arch Orthop Trauma Surg 2001;121:56-9.
17. Maier D, Jaeger M, Izadpanah K, Bornebusch L, Suedkamp NP, et al. Rotator cuff preservation in arthroscopic treatment of calcific tendinitis. Arthroscopy 2013;29:824-31.
18. Litchman HM, Silver CM, Simon SD, Eshragi A. The surgical management of calcific tendinitis of the shoulder. Int Surg 1968;50:474-82.
19. McKendry RJ, Uhthoff HK, Sarkar K, Hyslop PS. Calcifying tendinitis of the shoulder: Prognostic value of clinical, histologic, and radiologic features in 57 surgically treated cases. J Rheumatol 1982;9:75-80.
20. Ark JW, Flock TJ, Flatow EL, Bigliani LU. Arthroscopic treatment of calcific tendinitis of the shoulder. Arthroscopy 1992;8:183-8.
21. Klein W, Gassen A, Laufenberg B. Endoskopische subacromiale dekompression und tendinitis calcarea. Arthoskopie 1992;5:247-51.
22. Lee TK, Shin SJ. Functional recovery of the shoulder after arthroscopic treatment for chronic calcific tendinitis. Clin Shoulder Elb 2018;21:75-81.
23. Balke M, Bielefeld R, Schmidt C, Dedy N, Liem D. Calcifying tendinitis of the shoulder: Midterm results after arthroscopic treatment. Am J Sports Med 2012;40:657-61.
24. Cho CH, Bae KC, Kim BS, Kim HJ, Kim DH. Recovery pattern after arthroscopic treatment for calcific tendinitis of the shoulder. Orthop Traumatol Surg Res 2020;106:687-91.
25. Verhaegen F, Brys P, Debeer P. Rotator cuff healing after needling of a calcific deposit using platelet-rich plasma augmentation: A randomized, prospective clinical trial. J Shoulder Elbow Surg 2016;25:169-73.
26. Wilson WK, Field LD. Management strategies for rotator cuff defects after calcific tendinitis debridement. Arthrosc Tech 2019;8:e1051-5.
27. Uththoff H, Loehr JW. Calcific tendinopathy of the rotator cuff: Pathogenesis, diagnosis and management. J Am Acad Orthop Surg1997;5:183-91.
28. Weber SC. Arthroscopic Treatment of Calcific Tendinitis AANA 17th Annual Fall Course Palm Desert; 1998.

29. Yoo JC, Park WH, Koh KH, Kim SM. Arthroscopic treatment of chronic calcific tendinitis with complete removal and rotator cuff tendon repair. Knee Surg Sports Traumatol Arthrosc 2010;18:1694-9.

30. ElIman H, Bigliani LU, Flatow E, Esch IC, Snyder SJ, Oglivie-Harris D, et al. Arthroscopic Treatment of Calcifying Tendinitis: The American Experience. Paris, France: Presented, 5th International Conference on
Shoulder Surgery; 1992.
31. Maier D, Jaeger M, Izadpanah K, Köstler W, Bischofberger AK, Südkamp NP, et al. Arthroscopic removal of chronic symptomatic calcifications of the supraspinatus tendon without acromioplasty: Analysis of postoperative recovery and outcome factors. Orthop J Sports Med 2014;2 (5):1-9. doi: 10.1177/2325967114533646.

32. Moya D, Ramón S, Guiloff L, Gerdesmeyer L. Current knowledge on evidence-based shockwave treatments for shoulder pathology. Int J Surg 2015;24:171-8.
33. Gerdesmeyer L, Wagenpfeil S, Haake M, Maier M, Loew M, Wortler K, et al. Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff: A randomized controlled trial. JAMA 2003;290:2573-80.
34. Cosentino R, De Stefano R, Selvi E, Frati E, Manca S, Frediani B, et al. Extracorporeal shock wave therapy for chronic calcific tendinitis of the shoulder: Single blind study. Ann Rheum Dis 2003;62:248-50.

35. Hsu CJ, Wang DY, Tseng KF, Fong YC, Hsu HC, Jim YF. Extracorporeal shock wave therapy for calcifying tendinitis of the shoulder. J Shoulder Elbow Surg. 2008;17:55-9.

36. Louwerens JK, Sierevelt IN, van Noort A, van den Bekerom MP. Evidence for minimally invasive therapies in the management of chronic calcific tendinopathy of the rotator cuff: A systematic review and metaanalysis. J Shoulder Elbow Surg 2014;23:1240-9.

37. Rompe JD, Zoellner J, Nafe B. Shock wave therapy versus conventional surgery in the treatment of calcifying tendinitis of the shoulder. Clin Orthop Relat Res 2001;387:72-82

38. Rebuzzi E, Coletti N, Schiavetti S, Giusto F. Arthroscopy surgery versus shock wave therapy for chronic calcifying tendinitis of the shoulder. J Orthop Traumatol 2008;9:179-85.

39. Dubs B. Efficacy and Economical Aspects: Comparison ESWT Versus Alternate Therapies in the Treatment of Calcifying Tendinitis. Orlando: 6th Congress of the International Society for Musculoskeletal Shockwave Therapy; 2003.

40. Eid J. Economic aspects in the treatment of tendinosis calcarea of the shoulder. In: 9th International Congress of the International Society for Musculoskeletal Shockwave Therapy; 2006.
41. Ramon S, Moya D, Alvarez P, Cugat R, Corbella X. Efficiency in the Treatment of Calcifying Tendinopathy of the Shoulder: Extracorporeal Shockwave Therapy vs. Surgery. Jeju, Korea: 13th International Congress of Shoulder and Elbow Surgery; 2016.
42. Cyteval C, Baron-Sarrabère MP, Jorgensen C, Cottin A, Benis J, Sany J, et al. MRI study before and after extracorporal shock wave therapy in calcifying tendinitis of the shoulder. J Radiol 2003;84:681-4.
43. Lorbach O, Kusma M, Pape D, Kohn D, Dienst M. Influence of deposit stage and failed ESWT on the surgical results of arthroscopic treatment of calcifying tendonitis of the shoulder. Knee Surg Sports Traumatol Arthrosc
2008;16:516-21.
44. Wright JG. Revised grades of recommendation for summaries or reviews of orthopaedic surgical studies. J Bone Joint Surg Am 2006;88:1161-2.


How to Cite this article: Moya D | Case Report: Focused Shock Waves as a Treatment Option in Failed Rotator Cuff Calcification Surgery | Journal of Regenerative Science | Dec 2021; 1(1): 51-54.

[Full Text HTML] [Full Text PDF] [XML]