The power of case reports

Editorial | Vol 4 | Issue 1 |  January-June 2024 | page: 01-02 | Daniel Moya

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.117


Author: Daniel Moya [1]

[1] Department of Orthopaedics. Buenos Aires British Hospital, Argentina.


Address of Correspondence
Dr. Daniel Moya,
Department of Orthopaedics. Buenos Aires British Hospital, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Editorial:

Medical education has currently a variety of tools as never before in the history of mankind. Options include everything from telepresence to virtual reality. However, interaction with patients remains, as in the past, an unsurpassed source of learning. Health-care practice provides learning about the way different pathologies manifest, their clinical course, and the response to different treatments.

A simple way to share that experience is through case reporting. A case report consists of a detailed description of significant clinical information of a case or a small group of patients, presenting pathologies not previously described, new therapeutic methodologies, or cases with an unusual response to treatment.

This type of study has often been underestimated because it is a category of publication with a low level of evidence [1-4] and does not have a high citation rate [1, 2, 4, 5]. These causes have led to case reports being a small segment of health publications [4].

However, these studies can provide important information [1-9]. Case reports can be the basis of future large-scale clinical studies [6], can reveal facts that often go unnoticed in large series of patients [3], and be the starting point for the development of new treatments [3]. They can demonstrate results in one or a few cases with therapeutic methods previously tested in animal experiments [4].

Case reports have made it possible to detect severe adverse effects [3, 4]. Nayak described that the teratogenic effect of thalidomide was identified through a case report of phocomelia [3].

We must also be aware that the publication of a case report is often the first step of a young colleague in the world of publications. That is why it should be encouraged. The publication of case reports allows even those who have less economic or institutional support for their academic activity to transmit their experience. It is a way to democratize scientific exchange and not depend only on supposed elites that end up transforming clinical research production groups into small aristocracies that generate only a one-way exchange.

Writing a case report has been described not only as an academic procedure but also as an art [8].

There is useful information in the literature about how to write this type of manuscripts [3, 4, 6, 8, 10]. Cases must be original and transmit information that has an impact on clinical practice. They must be structured like the rest of the publications, provide a complete and correct description of the case, and have solid bibliographic support.

Starting in this volume we will include case reports. On this occasion, they come from different colleagues from Ibero America. We also incorporated a new section that consists of critical reading of scientific publications related to regenerative medicine. Contributions, proposals, and criticisms will be welcome.


References

  1. Shyam A, Shetty G. Resurrection of the case report! J Orthop Case Rep 2011;1:1-2.
  2. Shyam A, Editor-Journal of Orthopaedic Case Reports. Case reports and case series: Expanding the scope of journal of orthopaedic case reports. J Orthop Case Rep 2016;6:1-2.
  3. Nayak BK. The significance of case reports in biomedical publication. Indian J Ophthalmol 2010;58:363-4.
  4. Pierson DJ. How to read a case report (or teaching case of the month). Respir Care 2009;54:1372-8.
  5. Hess DR. What is evidence-based medicine and why should I care? Respir Care 2004;49:730-41.
  6. Târcoveanu E, Roca M, Mihăescu T. Scrierea şi publicarea unei prezentări de caz clinic [Writing and publication of a clinical case report]. Chirurgia (Bucur) 2011;106:581-4.
  7. Guimarães CA. Evidence based case report. Rev Col Bras Cir 2015;42:280.
  8. Ortega-Loubon C, Culquichicón C, Correa R. The importance of writing and publishing case reports during medical training. Cureus 2017;9:e1964.
  9. Rison RA, Kidd MR, Koch CA. The care (case report) guidelines and the standardization of case reports. J Med Case Rep 2013;7:261.
  10. Cohen H. How to write a patient case report. Am J Health Syst Pharm 2006;63:1888-92.

How to Cite this article: Moya D | The Power of Case Reports. | Journal of Regenerative Science | Jan-Jun 2024; 4(1): 01-02.


  (Abstract    Full Text HTML)   (Download PDF)


Extracorporeal Shock Wave Therapy in Calcifying Tendonitis of the Shoulder. Case Report

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 03-05 | Oyama Arruda Frei Caneca Júnior

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.119

 

Author: Oyama Arruda Frei Caneca Júnior [1]

[1] GOT – Orthopedics and Traumatology Group, Recife, Brazil.

Address of Correspondence
Oyama Arruda Frei Caneca Júnior,

GOT – Orthopedics and Traumatology Group, Recife, Brazil.

E-mail: oyama.arruda@gmail.com


Abstract

Calcific tendonitis in the shoulder is very common. Patients who do not improve with physical therapy treatment may benefit from shockwave treatment before an invasive procedure is indicated. The focused shockwave treatment has a high degree of recommendation in calcific tendonitis of the shoulder, according to several studies with a high level of evidence. This report shows a 58-year-old female patient with calcific tendonitis of the shoulder with pain for more than 6 months without response to medication and rehabilitation treatment. Four sessions of 3000 pulses were performed with a focused shockwave piezoelectric device, with a maximum level of energy of 0.4 mj/mm2. Pain remission and calcification resorption were verified 3 months after the last application. Extracorporeal Shockwave Treatment is a safe and effective alternative for calcific tendonitis of the shoulder.
Keywords: ESWT, calcific tendinopathy, shoulder


References:

1. Chianca V, Albano D, Messina C, Midiri F, Mauri G, Aliprandi A, et al. Rotator cuff calcific tendinopathy: From diagnosis to treatment. Acta Biomed 2018;89:186-96.
2. Moreira G. Tratado de Dor Musculo Esquelética. 2ª ed. Cap. 18. Dor no Ombro. São Paulo: Ed. Alef; 2022.
3. Bosworth BM. Calcium deposits in the shoulder and subacromial bursitis. J Am Med Assoc 1941;116:2477-82.
4. Kim MS, Kim IW, Lee S, Shin SJ. Diagnosis and treatment of calcific tendinitis of the shoulder. Clin Shoulder Elb 2020;23:210-6.
5. Gärtner J. Tendinosis calcarea: Results of treatment with needling. Z Orthop Ihre Grenzgeb 1993;131:461-9.
6. Tratado de Ondas de Choque. Sociedade Médica Brasileira de Tratamento Por Ondas de Choque. 1st ed., Cap. 7. Tratamento por Ondas de Choque em Patologias do Ombro. Sao Paulo: Ed Alef; 2022. P. 89-98.
7. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
8. Moya D, Ramón S, Guiloff L, Gerdesmeyer L. Current knowledge on evidence-based shockwave treatments for shoulder pathology. Int J Surg 2015;24:171-8.


How to Cite this article: Caneca OAF Jr. Extracorporeal Shock Wave Therapy in Calcifying Tendonitis of the Shoulder. Case Report. Journal of Regenerative Science 2024;January-June;4(1):03-05

[Article Text HTML]       [Full Text PDF] 


Focused Shock Waves in Delayed Union and No-union after Intramedullary Nailing in Lower Limbs

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 06-08 | Josep Pous

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.121

 

Author: Josep Pous [1]

[1] Orthopaedic Surgeon and Medical Director of CEMATEC, Barcelona, España.

Address of Correspondence
Dr. Josep Pous,
Orthopaedic Surgeon and Medical Director of CEMATEC, Barcelona, España.
E-mail: jpous@cematec.org


Abstract

Shock waves have changed medical therapy substantially. Accounting for the epidemiology of the treated diseases, this therapeutic tool may equal or even surpass the impact of extracorporeal shock wave lithotripsy. Lower limb fractures after intramedullary nailing generally heal without problems when there are good local conditions and no associated pathologies, but sometimes if the biomechanical or biological variables are not ideal, they can lead to a delay in healing or develop a non-union. Extracorporeal shock waves therapy is a treatment option in delayed union and no-union after intramedullary nailing in lower limbs cases in which there is mechanical stability of the fracture focus, as they can allow healing without the need for new surgeries.
Keywords: Extracorporeal shockwave therapy, Shock waves, Non-union, Delayed union


References:

1. Jensen SS, Jensen NM, Gundtoft PH, Kold S, Zura R, Viberg B. Risk factors for nonunion following surgically managed, traumatic, diaphyseal fractures: A systematic review and meta-analysis. EFORT Open Rev 2022;7:516-25.
2. Zura R, Mehta S, Della Rocca GJ, Steen RG. Biological risk factors for nonunion of bone fracture. JBJS Rev 2016;4:e5.
3. Sadat-Ali M, Al-Omar HK, AlTabash KW, AlOmran AK, AlDakheel DA, AlSayed HN. Genetic influence of fracture nonunion (FNU): A systematic review. Pharmgenomics Pers Med 2023;16:569-75.
4. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
5. Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 2016;151:e162775.
6. Tian R, Zheng F, Zhao W, Zhang Y, Yuan J, Zhang B, et al. Prevalence and influencing factors of nonunion in patients with tibial fracture: Systematic review and meta-analysis. J Orthop Surg Res 2020;15:377.
7. Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res 2001;387:102-11.
8. Tamma R, Dell’Endice S, Notarnicola A, Moretti L, Patella S, Patella V, et al. Extracorporeal shock waves stimulate osteoblast activities. Ultrasound Med Biol 2009;35:2093-100.
9. Hofmann A, Ritz U, Rompe JD, Tresch A, Rommens PM. The effect of shock wave therapy on gene expression in human osteoblasts isolated from hypertrophic fracture non-unions. Shock Waves 2015;25:1:91-102.
10. Suhr F, Delhasse Y, Bungartz G, Schmidt A, Pfannkuche K, Bloch W. Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res 2013;11:951-64.
11. Wang CJ, Huang KE, Sun YC, Yang YJ, Ko JY, Weng LH, et al. VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits. J Surg Res 2011;171:114-9.
12. Li B, Wang R, Huang X, Ou Y, Jia Z, Lin S, et al. Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model. Front Endocrinol (Lausanne) 2021;12:627718.
13. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 1997;158:4-11.
14. Alkhawashki HM. Shock wave therapy of fracture nonunion. Injury 2015;46:2248-52.
15. Willems A, Van der Jagt OP, Meuffels DE. Extracorporeal shock wave treatment for delayed union and nonunion fractures: A systematic review. J Orthop Trauma 2019;33:97-103.
16. Sansone V, Ravier D, Pascale V, Applefield R, Del Fabbro M, Martinelli N. Extracorporeal shockwave therapy in the treatment of nonunion in long bones: A systematic review and meta-analysis. J Clin Med 2022;11:1977.
17. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 2001;387:95-101.
18. Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009;91:2589-97. Erratum in: J Bone Joint Surg Am 2010;92:1241.
19. Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 2010;92:846-54.
20. Notarnicola A, Moretti L, Tafuri S, Gigliotti S, Russo S, Musci L, et al. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol 2010;36:1306-13.
21. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–first choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
22. Haffner N, Antonic V, Smolen D, Slezak P, Schaden W, Mittermayr R, et al. Extracorporeal shockwave therapy (ESWT) ameliorates healing of tibial fracture non-union unresponsive to conventional therapy. Injury 2016;47:1506-13.
23. Sandoval C, Valenzuela A, Rojas C, Brañes M, Guiloff L. Extracorporeal shockwave therapy for atrophic and oligotrophic nonunion of tibia and femur in high energy trauma patients. Case series. Int J Surg 2017;9:36-40.


How to Cite this article: Pous J. Focused Shock Waves in Delayed Union and No-union after Intramedullary Nailing in Lower Limbs. Journal of Regenerative Science 2024;January-June;4(1):06-08

[Article Text HTML]       [Full Text PDF] 


Treatment with Shockwave Therapy in a Patient with Joint Hypermobility and Temporomandibular Dysfunction

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 09-15| Claudio Lopes Simplicio, Angélle Aragonez Essado Jácomo, Guilherme Antonio Moreira de Barros

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.123

Author: Claudio Lopes Simplicio [1], Angélle Aragonez Essado Jácomo [2], Guilherme Antonio Moreira de Barros [3]

[1] Orthopedics – Physiatrist – Antalgic Therapy, RJ Brazil Ortofisio Clinic – Instdor Clinic, Sao Paulo State University (UNESP), Botucatu – SP Brazil,
[2] Physiatrist – Pain Doctor, DF, Brazil.
[3] Antalgic Therapy and Palliative Care, Faculdade de Medicina de Botucatu, UNESP-SP, Brazil.

Address of Correspondence
Dr. Cláudio Simplicio,
Orthopedics – Physiatrist – Antalgic Therapy,RJ Brazil, Ortofisio Clinic – Instdor Clinic, Sao Paulo State University (UNESP), Botucatu – SP Brazil.
E-mail: drsimplicio@terra.com.br


Abstract

The text addresses the relationship between joint hypermobility (JH), Ehlers-Danlos Syndrome (EDS), and temporomandibular dysfunction (TMD) in patients, discussing the complexity, and comorbidities associated with these conditions. A clinical case is presented, along with the treatment, including focused shockwave therapy as a non-invasive therapeutic approach. The effectiveness of shockwave therapy is discussed in relation to pain relief and musculoskeletal system regeneration, based on studies and scientific evidence.
However, despite the potential benefits, further research is still needed to fully understand the effects of these therapies in patients with specific conditions, such as JHjoint hypermobility and ehlers-danlos syndrome (EDS. The safety and efficacy of shockwave therapy are also discussed, emphasizing the importance of following rigorous protocols to avoid complications.
This summary highlights the relevance of shockwave therapy in the treatment of TMD and other musculoskeletal conditions, providing a comprehensive view of therapeutic approaches and clinical considerations involved.
Keywords: Joint Hypermobility, Ehlers-Danlos Syndrome, Temporomandibular Joint Dysfunction Syndrome, Extracorporeal Shockwave Therapy


References:


1. Malek S, Reinhold EJ, Pearce GS. The Beighton Score as a measure of generalised joint hypermobility. Rheumatol Int. 2021 Oct;41(10):1707-1716. doi: 10.1007/s00296-021-04832-4. Epub 2021 Mar 18. PMID: 33738549; PMCID: PMC8390395
2. Martin VT, Neilson D. Joint hypermobility and headache: the glue that binds the two together–part 2. Headache. 2014 Sep;54(8):1403-11. doi: 10.1111/head.12417. Epub 2014 Jun 23. PMID: 24958300.
3. Castori M, Tinkle B, Levy H, Grahame R, Malfait F, Hakim A. A framework for the classification of joint hypermobility and related conditions. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):148-157. doi: 10.1002/ajmg.c.31539. Epub 2017 Feb 1. PMID: 28145606.
4. P. Beighton, L. Solomon, C. L. Soskolne. Articular mobility in an African population. Ann Rheum Dis 1973;32:413.
5. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):8-26. doi: 10.1002/ajmg.c.31552. PMID: 28306229.
6. Castori M, Camerota F, Celletti C, Grammatico P, Padua L. Ehlers-Danlos syndrome hypermobility type and the excess of affected females: possible mechanisms and perspectives. Am J Med Genet A. 2010 Sep;152A(9):2406-8. doi: 10.1002/ajmg.a.33585. PMID: 20684008.
7. Castori M. Ehlers-danlos syndrome, hypermobility type: an underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations. ISRN Dermatol. 2012;2012:751768. doi: 10.5402/2012/751768. Epub 2012 Nov 22. PMID: 23227356; PMCID: PMC3512326.
8. Sanches SH, Osório Fde L, Udina M, Martín-Santos R, Crippa JA. Anxiety and joint hypermobility association: a systematic review. Braz J Psychiatry. 2012 Jun;34 Suppl 1:S53-60. English, Portuguese. doi: 10.1590/s1516-44462012000500005. PMID: 22729449.
9. Bielajew BJ, Donahue RP, Espinosa MG, Arzi B, Wang D, Hatcher DC et al. Knee orthopedics as a template for the temporomandibular joint. Cell Rep Med. 2021 Apr 14;2(5):100241. doi: 10.1016/j.xcrm.2021.100241. PMID: 34095872; PMCID: PMC8149366.
10. Schmitz C, Császár NB, Milz S, Schieker M, Maffulli N, Rompe JD, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull. 2015;116(1):115-38. doi: 10.1093/bmb/ldv047. Epub 2015 Nov 18. PMID: 26585999; PMCID: PMC4674007.
11. Contaldo C, Högger DC, Khorrami Borozadi M, Stotz M, Platz U, Forster N et al. Radial pressure waves mediate apoptosis and functional angiogenesis during wound repair in ApoE deficient mice. Microvasc Res. 2012 Jul;84(1):24-33. doi: 10.1016/j.mvr.2012.03.006. Epub 2012 Mar 29. PMID: 22504489.
12. Simplicio C, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JF. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020;11:S309-18.
13. Rompe JD, Kirkpatrick CJ, Küllmer K, Schwitalle M, Krischek O. Dose-related effects of shock waves on rabbit tendo Achillis. A sonographic and histological study. J Bone Joint Surg Br. 1998 May;80(3):546-52. doi: 10.1302/0301-620x.80b3.8434. PMID: 9619954.
14. Simplício CL, SMBTOC. Tratado de Ondas de Choque. Abu Dhabi: Sociedade Médica Brasileira de Tratamento por Ondas de Choque, Alef; 2022.
15. Gollmann-Tepeköylü C, Pölzl L, Graber M, Hirsch J, Nägele F, Lobenwein D, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovasc Res. 2020 May 1;116(6):1226-1236. doi: 10.1093/cvr/cvz209. PMID: 31410448.
16. Simplicio C, Santos G, Shinzato GT, De Barros GA, Imamura M, Neto AD, et al. Extracorporeal shockwave treatment for low back pain: A descriptive of the literature. Biol Orthop J 2022;4:e96-105. DOI https://doi.org/10.22374/boj.v4iSP1.46
17. Sukubo NG, Tibalt E, Respizzi S, Locati M, d’Agostino MC. Effect of shock waves on macrophages: A possible role in tissue regeneration and remodeling. Int J Surg. 2015 Dec;24(Pt B):124-30. doi: 10.1016/j.ijsu.2015.07.719. Epub 2015 Aug 18. PMID: 26291028.
18. Kapferer-Seebacher I, Lundberg P, Malfait F, Zschocke J. Periodontal manifestations of Ehlers-Danlos syndromes: A systematic review. J Clin Periodontol. 2017 Nov;44(11):1088-1100. doi: 10.1111/jcpe.12807. Epub 2017 Sep 25. PMID: 28836281.
19. Carvalho TG. Síndrome De Ehlers-Danlos. Espondiloartrite e Manifestações Orofaciais-Um Caso Clínico. Porto: Universidade Fernando Pessoa, Faculdade de Ciências da Saúde; 2023. Available in: https://bdigital.ufp.pt/bitstream/10284/12064/1/PPG_33477.pdf
20. Kapferer-Seebacher I, Schnabl D, Zschocke J, Pope FM. Dental Manifestations of Ehlers-Danlos Syndromes: A Systematic Review. Acta Derm Venereol. 2020 Mar 25;100(7):adv00092. doi: 10.2340/00015555-3428. PMID: 32147746; PMCID: PMC9128968.
21. Buryk-Iggers S, Mittal N, Santa Mina D, Adams SC, Englesakis M, Rachinsky M, et al. Exercise and Rehabilitation in People With Ehlers-Danlos Syndrome: A Systematic Review. Arch Rehabil Res Clin Transl. 2022 Mar 4;4(2):100189. doi: 10.1016/j.arrct.2022.100189. PMID: 35756986; PMCID: PMC9214343.
22. Kapferer-Seebacher I, van Dijk FS, Zschocke J. Periodontal Ehlers-Danlos Syndrome. 2021 Jul 29. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK572429/.
23. Kosho T, Mizumoto S, Watanabe T, Yoshizawa T, Miyake N, Yamada S. Recent Advances in the Pathophysiology of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel). 2019 Dec 29;11(1):43. doi: 10.3390/genes11010043. PMID: 31905796; PMCID: PMC7017038.
24. Lepperdinger U, Zschocke J, Kapferer-Seebacher I. Oral manifestations of Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2021 Dec;187(4):520-526. doi: 10.1002/ajmg.c.31941. Epub 2021 Nov 6. PMID: 34741498; PMCID: PMC9298068.
25. Song B, Yeh P, Nguyen D, Ikpeama U, Epstein M, Harrell J. Ehlers-Danlos Syndrome: An Analysis of the Current Treatment Options. Pain Physician. 2020 Jul;23(4):429-438. PMID: 32709178.
26. Yoshizawa T, Kosho T. Mouse Models of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel). 2023 Feb 8;14(2):436. doi: 10.3390/genes14020436. PMID: 36833362; PMCID: PMC9957544.
27. Tian Y, Cui S, Guo Y, Zhao N, Gan Y, Zhou Y, et al. Similarities and differences of estrogen in the regulation of temporomandibular joint osteoarthritis and knee osteoarthritis. Histol Histopathol. 2022 May;37(5):415-422. doi: 10.14670/HH-18-442. Epub 2022 Feb 23. PMID: 35194774.
28. Urits I, Charipova K, Gress K, Schaaf AL, Gupta S, Kiernan HC, et al.. Treatment and management of myofascial pain syndrome. Best Pract Res Clin Anaesthesiol. 2020 Sep;34(3):427-448. doi: 10.1016/j.bpa.2020.08.003. Epub 2020 Aug 8. PMID: 33004157.
29. Ba S, Zhou P, Yu M. Ultrasound is Effective to Treat Temporomandibular Joint Disorder. J Pain Res. 2021 Jun 10;14:1667-1673. doi: 10.2147/JPR.S314342. PMID: 34140803; PMCID: PMC8203600.
30. Sabeti-Aschraf M, Dorotka R, Goll A, Trieb K. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff. Am J Sports Med. 2005 Sep;33(9):1365-8. doi: 10.1177/0363546504273052. Epub 2005 Jul 7. PMID: 16002492.
31. Li W, Wu J. Treatment of Temporomandibular Joint Disorders by Ultrashort Wave and Extracorporeal Shock Wave: A Comparative Study. Med Sci Monit. 2020 Jun 21;26:e923461. doi: 10.12659/MSM.923461. PMID: 32564051; PMCID: PMC7328499.
32. Kim YH, Bang JI, Son HJ, Kim Y, Kim JH, Bae H, et al. Protective effects of extracorporeal shockwave on rat chondrocytes and temporomandibular joint osteoarthritis; preclinical evaluation with in vivo99mTc-HDP SPECT ex vivo micro-CT. Osteoarthritis Cartilage 2019;27:1692-701. DOI: 10.1016/j.joca.2019.07.008
33. Hazan-Molina H, Reznick AZ, Kaufman H, Aizenbud D. Assessment of IL-1β and VEGF concentration in a rat model during orthodontic tooth movement and extracorporeal shock wave therapy. Arch Oral Biol. 2013 Feb;58(2):142-50. doi: 10.1016/j.archoralbio.2012.09.012. Epub 2012 Oct 22. PMID: 23088789.
34. Manafnezhad J, Salahzadeh Z, Salimi M, Ghaderi F, Ghojazadeh M. The effects of shock wave and dry needling on active trigger points of upper trapezius muscle in patients with non-specific neck pain: A randomized clinical trial. J Back Musculoskelet Rehabil. 2019;32(5):811-818. doi: 10.3233/BMR-181289. PMID: 30883334.
35. Zhang X, Yan X, Wang C, Tang T, Chai Y. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy. J Surg Res. 2014 Jan;186(1):484-92. doi: 10.1016/j.jss.2013.08.013. Epub 2013 Sep 3. PMID: 24035231.
36. Al-Moraissi EA, Farea R, Qasem KA, Al-Wadeai MS, Al-Sabahi ME, Al-Iryani GM. Effectiveness of occlusal splint therapy in the management of temporomandibular disorders: network meta-analysis of randomized controlled trials. Int J Oral Maxillofac Surg. 2020 Aug;49(8):1042-1056. doi: 10.1016/j.ijom.2020.01.004. Epub 2020 Jan 22. PMID: 31982236.
37. Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res. 2003 Nov;21(6):984-9. doi: 10.1016/S0736-0266(03)00104-9. PMID: 14554209.
38. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
39. Király, M., Bender, T., & Hodosi, K. (2018). Comparative study of shockwave therapy and low-level laser therapy effects in patients with myofascial pain syndrome of the trapezius. Rheumatology International. doi:10.1007/s00296-018-4134-x 10.1007/s00296-018-4134-x
40. Poenaru D, Sandulescu MI, Cinteza D. Biological effects of extracorporeal shockwave therapy in tendons: A systematic review. Biomed Rep. 2022 Dec 29;18(2):15. doi: 10.3892/br.2022.1597. PMID: 36684664; PMCID: PMC9845689..
41. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Malos resultados y complicaciones en el uso de ondas de choque focales y ondas de presión radial en patología musculoesquelética [Poor results and complications in the use of focused shockwaves and radial pressure waves in musculoskeletal pathology]. Rehabilitacion (Madr). 2022 Jan-Mar;56(1):64-73. Spanish. doi: 10.1016/j.rh.2021.02.007. Epub 2021 Apr 5. PMID: 33832759.
42. Zhang X, Yan X, Wang C, Tang T, Chai Y. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy. J Surg Res. 2014 Jan;186(1):484-92. doi: 10.1016/j.jss.2013.08.013. Epub 2013 Sep 3. PMID: 24035231.
43. Lu CC, Chou SH, Shen PC, Chou PH, Ho ML, Tien YC. Extracorporeal shock wave promotes activation of anterior cruciate ligament remnant cells and their paracrine regulation of bone marrow stromal cells’ proliferation, migration, collagen synthesis, and differentiation. Bone Joint Res. 2020 Aug 11;9(8):458-468. doi: 10.1302/2046-3758.98.BJR-2019-0365.R1. PMID: 32832074; PMCID: PMC7418778.


How to Cite this article:  Simplicio CL, Jácomo AAE, de Barros GAM. Treatment with Shockwave Therapy in a Patient with Joint Hypermobility and Temporomandibular Dysfunction. Journal of Regenerative Science | 2024; January-June;4(1):09-15.

[Article Text HTML]       [Full Text PDF] 


A Diagnostic Mistake, Treated with Shock Waves: Dabska Tumor

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 16-19| Paul Germán Terán Vela, Felipe Sebastián Criollo Palacios, Estefanía Anabel Lozada Tobar, Luis Eduardo Guzmán Freire, Eloísa Abigael Nájera García

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.125

Author: Paul Germán Terán Vela [1], Felipe Sebastián Criollo Palacios [2], Estefanía Anabel Lozada Tobar [1], Luis Eduardo Guzmán Freire [3], Eloísa Abigael Nájera García [2]

 

[1] Orthopaedic Surgeon, Orthopedic Specialties Center, Quito-Ecuador,
[2] NGC Diagnóstica, Orthopedic Oncology, Quito-Ecuador,
[3] Physician, Orthopedic Specialties Center, Quito-Ecuador.

Address of Correspondence
Dr. Paul Germán Terán Vela,
Orthopaedic Surgeon, Orthopedic Specialties Center, Quito-Ecuador.
E-mail: paulteranmd@gmail.com


Abstract

Papillary intralymphatic angioendothelioma (PILA) or Dabska tumor (DT) is a low-grade angiosarcoma. This vascular tumor usually has a higher incidence during childhood and occurs the most in the extremities and trunk. DT is locally aggressive, and no high metastatic potential is reported. We present a case of a 34-year-old female patient, treated with extracorporeal shock wave therapy (ESWT) for a misdiagnosis of left patellar tendinopathy. Due to the persistence and intensification of her symptoms, she is re-evaluated by Orthopedic Specialists. In magnetic resonance imaging studies, a mass was identified in the left external femoral condyle measuring approximately 10 mm with significant diffuse bone edema. Surgical resection was performed, and a PILA was identified by immunohistochemistry. In this case report, the complications of the use of focused ESWT and the histopathological characteristics of DT are discussed.
Keywords: Dabska tumor, Intralymphatic papillary angioendothelioma, Focused shock waves, Complications


References:


1. Schwartz RA, Dabski C, Da M. The da bska tumor: A thirty-year retrospect. Dermatology 2000;201:1-5.
2. Fanburg-Smith JC, Michal M, Partanen TA, Alitalo K, Miettinen M. Papillary intralymphatic angioendothelioma (PILA). A report of twelve cases of a distinctive vascular tumor with phenotypic features of lymphatic vessels. Am J Surg Pathol 1999;23:1004-10.
3. Fletcher CD, Krishnan K, Mertens UF. Pathology and Genetics of Tumours of Soft Tissue and Bone. Switzerland: WHO; 2002.
4. Nakayama T, Nishino M, Takasu K, Hayakawa K, Toguchida J, Tanaka C. Endovascular papillary angioendothelioma (Dabska tumor) of bone. Orthopedics 2004;27:327-8.
5. Bhatia A, Nada R, Kumar Y, Menon P. Dabska tumor (Endovascular papillary angioendothelioma) of testis: A case report with brief review of literature. Diagn Pathol 2006;1:12.
6. Pozo-Kreilinger JJ, Pena-Burgos EM, Ortiz-Cruz EJ, Cordero-García JM, Barrientos Ruiz I, Tapia-Viñe M, Peleteiro-Pensado M, Bernabéu-Taboada D. Primary intraosseous papillary intralymphatic angioendothelioma of the distal femoral epiphysis: a case report with literature review. Skeletal Radiol. 2024 Apr 15. doi: 10.1007/s00256-024-04674-8. Epub ahead of print. PMID: 38619614. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Poor results and complications in the use of focused shockwaves and radial pressure waves in musculoskeletal pathology. Rehabilitacion (Madr) 2022;56:64-73.
7. Wang CJ, Wang FS, Yang K. WANG Biological Mechanisms of ESWT. ISMST Newsletter; 2006. p. 5-11. Available from: http://www.shockwave.cc/e107_images/custom/sw-bioogical_mechanism_of_eswt.pdf [Last accessed on 2024 May 19].
8. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg 2018;100:251-63.
9. ISMST-International Society for Medical Shockwave Treatment ESWT Guidelines. Available from: https://www.ismst.com. Last accessed April 2024.


 

How to Cite this article: Vela PGT, Palacios FSC, Tobar EAL, Freire LEG, García EAN. A Diagnostic Mistake, Treated with Shock Waves: Dabska Tumor. Journal of Regenerative Science 2024;January-June;4(1):16-19.

[Article Text HTML]       [Full Text PDF] 


Regeneration of the Patellar Tendon with Radial Pressure Waves in a Sharp Injury: A Case Report

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 20-23 | A A Flores Salinas, G C Reyes Cordero, L B García Rodriguez, L C Villa Olivares

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.127

Author: A A Flores Salinas [1], G C Reyes Cordero [2], L B García Rodriguez [3], L C Villa Olivares [4]

[1] Department of Rehabilitation Medicine, Medical Director of Physis Clinics, Chihuahua, Mexico,
[2] Department of Rheumatology, Hospital Ángeles, Chihuahua, Mexico,
[3] Department of Orthopedics and Traumatology, Hospital Central Universitario, Chihuahua, Mexico,
[4] Department of Radiology, Civil Pensions of the State of Chihuahua, Mexico.

Address of Correspondence
Dr. A A Flores Salinas,
Department of Rehabilitation Medicine, Medical Director of Physis Clinics, Chihuahua, Mexico.
Email- drazaelflores@hotmail.com


Abstract

Patellar tendon ruptures are rare injuries and are more commonly associated with predisposing factors and previous surgical procedures than with direct trauma. Acute partial-thickness tears are usually treated with immobilization and rehabilitation. The literature recommends surgical management of partial ruptures of the patellar tendon after 6 months of failure of conservative treatments and in acute cases with a compromise >50–55% of the tendon. Radial pressure wave therapy is a safe, non-invasive technique with scientific support in tissue regeneration; it is found as one of the therapeutic alternatives for the management of tendinopathy and partial ruptures of the patellar tendon. The present case report shows the effectiveness of radial pressure wave therapy in a shear injury of the patellar tendon, with a compromise of at least 70%. We have not found similar cases previously reported in the literature, highlighting its relevance.
Keywords: Patellar tendon, Radial pressure waves, Patellar tendon rupture, Cutting injury


References:

1. Matava MJ. Patellar tendon ruptures. J Am Acad Orthop Surg 1996;4:287-96.
2. Pires R, Prado J, Hara R, Ferreira E, Schiavo L, Giordano V, et al. Epidemiological study on tendon ruptures of the knee extensor mechanism at a level 1 hospital. Rev Bras Ortop 2015;47:719-23.
3. Stinner D, Orr JD, Hsu JR. Fluoroquinolone-associated bilateral patellar tendon rupture: A case report and review of the literature. Mil Med 2010;175:457-9. Pages 457–459, https://doi.org/10.7205/MILMED-D-09-00142
4. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HG, Stricker BH. Fluoroquinolones and risk of Achilles tendon disorders: case-control study. BMJ. 2002 Jun 1;324(7349):1306-7. doi: 10.1136/bmj.324.7349.1306. PMID: 12039823; PMCID: PMC113766.
5. Yang F, Wang GD, Huang R, Ma H, Zhao XW. Ligament augmentation reconstruction system artificial ligaments in patellar tendon reconstruction – a chronic patellar tendon rupture after multiple operations: A case report. World J Clin Cases. 2020 Feb 26;8(4):831-837. doi: 10.12998/wjcc.v8.i4.831. PMID: 32149068; PMCID: PMC7052563.
6. Brinkman JC, Reeson E, Chhabra A. Acute Patellar Tendon Ruptures: An Update on Management. J Am Acad Orthop Surg Glob Res Rev. 2024 Apr 3;8(4):e24.00060. doi: 10.5435/JAAOSGlobal-D-24-00060. PMID: 38569093; PMCID: PMC10994452.
7. Zhang J, Keenan C, Wang JH. The effects of dexamethasone on human patellar tendon stem cells: implications for dexamethasone treatment of tendon injury. J Orthop Res. 2013 Jan;31(1):105-10. doi: 10.1002/jor.22193. Epub 2012 Aug 8. PMID: 22886634; PMCID: PMC3498577.
8. Pritchard CH, Berney S. Patellar tendon rupture in systemic lupus erythematosus. J Rheumatol 1989;16:786-8.
9. Golman M, Wright ML, Wong TT, Lynch TS, Ahmad CS, Thomopoulos S, Popkin CA. Rethinking Patellar Tendinopathy and Partial Patellar Tendon Tears: A Novel Classification System. Am J Sports Med. 2020 Feb;48(2):359-369. doi: 10.1177/0363546519894333. Epub 2020 Jan 8. PMID: 31913662.
10. Swamy GN, Nanjayan SK, Yallappa S, Bishnoi A, Pickering SA. Is ultrasound diagnosis reliable in acute extensor tendon injuries of the knee? Acta Orthop Belg 2012;78:764-70.
11. Karlsson J, Kälebo P, Goksör LA, Thomée R, Swärd L. Partial rupture of the patellar ligament. Am J Sports Med 1992;20:390-5.
12. Moya D, Loske AM, Hobrough P, Moya C. History of Shock Waves and Radial Pressure Waves From Newton to Our Times. Journal of Regenerative Science. Jan-Jun 2023; 3(1): 09-14. DOI:10.13107/jrs.2023.v03.i01.70
13. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
14. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidence in shockwave treatment. SETOC (Spanish Society of Shockwave Treatment) recommendations Rehabilitación (Madr) 2021;55:291-300. DOI: 10.1016/j.rh.2021.02.002
15. Cleveland RO, Chitnis PV, McClure SR. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol. 2007 Aug;33(8):1327-35. doi: 10.1016/j.ultrasmedbio.2007.02.014. Epub 2007 Apr 27. PMID: 17467154.
16. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
17. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012 Mar 20;7:11. doi: 10.1186/1749-799X-7-11. PMID: 22433113; PMCID: PMC3342893.
18. Moreno GM. Definition and classification of obesity. R Méd Clín Las Condes 2012;23:124-8.
19. Wright JG, Einhorn TA, Heckman JD. Grades of recommendation. J Bone Joint Surg Am. 2005 Sep;87(9):1909-10. doi: 10.2106/JBJS.8709.edit. PMID: 16140803.
20. van der Worp H, Zwerver J, Hamstra M, van den Akker-Scheek I, Diercks RL. No difference in effectiveness between focused and radial shockwave therapy for treating patellar tendinopathy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2014 Sep;22(9):2026-32. doi: 10.1007/s00167-013-2522-z. Epub 2013 May 12. PMID: 23666379.
21. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997 Jul;158(1):4-11. doi: 10.1097/00005392-199707000-00003. PMID: 9186313.
22. Thijs KM, Zwerver J, Backx FJ, Steeneken V, Rayer S, Groenenboom P, Moen MH. Effectiveness of Shockwave Treatment Combined With Eccentric Training for Patellar Tendinopathy: A Double-Blinded Randomized Study. Clin J Sport Med. 2017 Mar;27(2):89-96. doi: 10.1097/JSM.0000000000000332. PMID: 27347857.


 

How to Cite this article: Salinas AAF, Cordero GCR, Rodriguez LBG, and Olivares LCV. Regeneration of the Patellar Tendon with Radial Pressure Waves in a Sharp Injury: A Case Report. Journal of Regenerative Science 2024;January-June;4(1):20-23.

[Article Text HTML]       [Full Text PDF]