Shock Wave Medicine: A Transformative Evolution in Modern Medicine

Original Article | Vol 3 | Issue 2 |  July-December 2023 | page: 05-09 | Sunte Li, Xiaoyu Fan, Wei Sun

DOI: https://doi.org/10.13107/jrs.2023.v03.i02.89


Author: Sunte Li [1], Xiaoyu Fan [2], Wei Sun [3, 4]

[1] Friends Central School, Philadelphia, Pennsylvania, USA,
[2] Department of Surgery, Peking University People’s Hospital, Beijing, China,
[3] Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
[4] Department of Orthopedics, Shockwave Center, China-Japan Friendship Hospital, Chaoyang, Beijing, China.

Address of Correspondence
Dr. Wei Sun,
Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA/Department of Orthopedics, Shockwave Center, China-Japan Friendship Hospital, Chaoyang, Beijing, China.
E-mail: wei.sun@pennmedicine.upenn.edu


Abstract

Since its inception as extracorporeal shock wave lithotripsy in the 1980s, the landscape of medical treatment has been revolutionized by the evolution of shock wave therapy. Over four decades, this therapy, now known as extracorporeal shock wave therapy (ESWT), has emerged as a cornerstone in modern medicine, redefining treatment paradigms across various medical disciplines. Certainly, despite the promising outcomes witnessed in various medical conditions such as musculoskeletal disorders, wound healing, urinary calculi, and erectile dysfunction,
it is crucial to acknowledge that shock wave therapy’s relatively short clinical tenure necessitates a cautious approach. While its effectiveness has been repeatedly demonstrated, establishing industry-standard protocols through large-scale, prospective randomized controlled trials remains imperative to solidify its standing in medical practice.
The integration of Artificial Intelligence technology holds significant promise for the future of shockwave medicine, enabling personalized treatment plans, real-time feedback, and improved cost-effectiveness.
Keywords: Shock waves, ESWT, Shockwave

 


References:

1. Seoane LM, Salvador JB, Alba A, Fentes DA. Technological innovations in shock wave lithotripsy. Actas Urol Esp (Engl Ed) 2024; (48)-1:105-110. https://doi.org/10.1016/j.acuroe.2023.09.001
2. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
3. Porst H. Review of the current status of low intensity extracorporeal shockwave therapy (Li-ESWT) in erectile dysfunction (ED), Peyronie’s disease (PD), and sexual rehabilitation after radical prostatectomy with special focus on technical aspects of the different marketed ESWT devices including personal experiences in 350 patients. Sex Med Rev 2021;9:93-122.
4. Van der Worp H, Van den Akker-Scheek I, Van Schie H, Zwerver J. ESWT for tendinopathy: Technology and clinical implications. Knee Surg Sports Traumatol Arthrosc 2013;21:1451-8.
5. Schroeder AN, Tenforde AS, Jelsing EJ. Extracorporeal shockwave therapy in the management of sports medicine injuries. Curr Sports Med Rep 2021;20:298-305.
6. Wang H, Shi Y. Extracorporeal shock wave treatment for post-surgical fracture nonunion: Insight into its mechanism, efficacy, safety and prognostic factors (Review). Exp Ther Med 2023;26:332.
7. Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JF. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020;11:S309-18.
8. Wigley CH, Janssen TJ, Mosahebi A. Shock wave therapy in plastic surgery: A review of the current indications. Aesthet Surg J 2023;43:370-86.
9. Kuo YR, Wang CT, Wang FS, Chiang YC, Wang CJ. Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen 2009;17:522-30.
10. Lee SY, Joo SY, Cho YS, Hur GY, Seo CH. Effect of extracorporeal shock wave therapy for burn scar regeneration: A prospective, randomized, double-blinded study. Burns 2021;47:821-7.
11. Yao H, Wang X, Liu H, Sun F, Tang G, Bao X et al. Systematic Review and Meta-Analysis of 16 Randomized Controlled Trials of Clinical Outcomes of Low-Intensity Extracorporeal Shock Wave Therapy in Treating Erectile Dysfunction. Am J Mens Health. 2022 Mar-Apr;16(2):15579883221087532. doi: 10.1177/15579883221087532. PMID: 35319291; PMCID: PMC8949743.
12. Dong L, Chang D, Zhang X, Li J, Yang F, Tan K, et al. Effect of low-intensity extracorporeal shock wave on the treatment of erectile dysfunction: A systematic review and meta-analysis. Am J Mens Health 2019;13:2. Published online. Open access: https://journals.sagepub.com/action/showCitFormats?doi=10.1177%2F1557988319846749&mobileUi=0
13. Wu WL, Bamodu OA, Wang YH, Hu SW, Tzou KY, Yeh CT, et al. Extracorporeal shockwave therapy (ESWT) alleviates pain, enhances erectile function and improves quality of Life in patients with chronic prostatitis/chronic pelvic pain syndrome. J Clin Med 2021;3602.
14. Radu CA, Kiefer J, Horn D, Rebel M, Koellensperger E, Gebhard MM, et al. Shock wave treatment in composite tissue allotransplantation. Eplasty 2011;11:e37.
15. Li HX, Zhang ZC, Peng J. Low-intensity extracorporeal shock wave therapy promotes recovery of sciatic nerve injury and the role of mechanical sensitive YAP/TAZ signaling pathway for nerve regeneration. Chin Med J (Engl) 2021;134:2710-20.
16. Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 2011;253:1024-32.
17. Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, et al. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. J Neurosurg 2014;121:1514-25.
18. López-Marín LM, Rivera AL, Fernández F, Loske AM. Shock wave-induced permeabilization of mammalian cells. Phys Life Rev 2018;26-27:1-38.
19. Yeh KH, Sheu JJ, Lin YC, Sun CK, Chang LT, Kao YH, et al. Benefit of combined extracorporeal shock wave and bone marrow-derived endothelial progenitor cells in protection against critical limb ischemia in rats. Crit Care Med 2012;40:169-77.
20. Reichenberger MA, Heimer S, Schaefer A, Lass U, Gebhard MM, Germann G, et al. Extracorporeal shock wave treatment protects skin flaps against ischemia-reperfusion injury. Injury 2012;43:374-80.
21. Sung PH, Fu M, Chiang HJ, Huang CR, Chu CH, Lee MS, et al. Reduced effects of cardiac extracorporeal shock wave therapy on angiogenesis and myocardial function recovery in patients with end-stage coronary artery and renal diseases. Biomed J 2021;44:S201-9.
22. Oktaş B, Orhan Z, Erbil B, Değirmenci E, Ustündağ N. Effect of extracorporeal shock wave therapy on fracture healing in rat femural fractures with intact and excised periosteum. Eklem Hastalik Cerrahisi 2014;25:158-62.
23. Qiao HY, Xin L, Wu SL. Analgesic effect of extracorporeal shock-wave therapy for frozen shoulder: A randomized controlled trial protocol. Medicine (Baltimore) 2020;99:e21399.
24. Fiani B, Davati C, Griepp DW, Lee J, Pennington E, Moawad CM. Enhanced spinal therapy: Extracorporeal shock wave therapy for the spine. Cureus 2020;12:e11200.
25. Özkan E, Şenel E, Bereket MC, Önger ME. The effect of shock waves on mineralization and regeneration of distraction zone in osteoporotic rabbits. Ann Med 2023;55:1346-54.
26. Shi L, Gao F, Sun W, Wang B, Guo W, Cheng L, et al. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients. Osteoporos Int 2017;28:2945-53.
27. Hao L, Liu Y, Wang T, Guo HL, Wang D, Bi YW, et al. Extracorporeal shock wave lithotripsy is safe and effective for geriatric patients with chronic pancreatitis. J Gastroenterol Hepatol 2019;34:466-73.
28. Klang E, Portugez S, Gross R, Lerner KR, Brenner A, Gilboa M, et al. Advantages and pitfalls in utilizing artificial intelligence for crafting medical examinations: A medical education pilot study with GPT-4. BMC Med Educ 2023;23:772.
29. Wójcik S, Rulkiewicz A, Pruszczyk P, Lisik W, Poboży M, Domienik-Karłowicz J. Beyond ChatGPT: What does GPT-4 add to healthcare? The dawn of a new era. Cardiol J 2023;30:1018-25.
30. Mun C, Ha H, Lee O, Cheon M. Enhancing AI-CDSS with U-AnoGAN: Tackling data imbalance. Comput Methods Programs Biomed 2023;244:107954.
31. Palavicini G. Intelligent health: Progress and benefit of artificial intelligence in sensing-based monitoring and disease diagnosis. Sensors (Basel) 2023;23:9053.


How to Cite this article: Li S, Fan X, Sun W. | Shock Wave Medicine: A Transformative Evolution in Modern Medicine. | Journal of Regenerative Science | Jul-Dec 2023; 3(2): 05-09.

 


[Full Text HTML] [Full Text PDF] 


0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *