Posts

Focused Shock Waves in Delayed Union and No-union after Intramedullary Nailing in Lower Limbs

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 06-08 | Josep Pous

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.121

 

Author: Josep Pous [1]

[1] Orthopaedic Surgeon and Medical Director of CEMATEC, Barcelona, España.

Address of Correspondence
Dr. Josep Pous,
Orthopaedic Surgeon and Medical Director of CEMATEC, Barcelona, España.
E-mail: jpous@cematec.org


Abstract

Shock waves have changed medical therapy substantially. Accounting for the epidemiology of the treated diseases, this therapeutic tool may equal or even surpass the impact of extracorporeal shock wave lithotripsy. Lower limb fractures after intramedullary nailing generally heal without problems when there are good local conditions and no associated pathologies, but sometimes if the biomechanical or biological variables are not ideal, they can lead to a delay in healing or develop a non-union. Extracorporeal shock waves therapy is a treatment option in delayed union and no-union after intramedullary nailing in lower limbs cases in which there is mechanical stability of the fracture focus, as they can allow healing without the need for new surgeries.
Keywords: Extracorporeal shockwave therapy, Shock waves, Non-union, Delayed union


References:

1. Jensen SS, Jensen NM, Gundtoft PH, Kold S, Zura R, Viberg B. Risk factors for nonunion following surgically managed, traumatic, diaphyseal fractures: A systematic review and meta-analysis. EFORT Open Rev 2022;7:516-25.
2. Zura R, Mehta S, Della Rocca GJ, Steen RG. Biological risk factors for nonunion of bone fracture. JBJS Rev 2016;4:e5.
3. Sadat-Ali M, Al-Omar HK, AlTabash KW, AlOmran AK, AlDakheel DA, AlSayed HN. Genetic influence of fracture nonunion (FNU): A systematic review. Pharmgenomics Pers Med 2023;16:569-75.
4. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
5. Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 2016;151:e162775.
6. Tian R, Zheng F, Zhao W, Zhang Y, Yuan J, Zhang B, et al. Prevalence and influencing factors of nonunion in patients with tibial fracture: Systematic review and meta-analysis. J Orthop Surg Res 2020;15:377.
7. Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res 2001;387:102-11.
8. Tamma R, Dell’Endice S, Notarnicola A, Moretti L, Patella S, Patella V, et al. Extracorporeal shock waves stimulate osteoblast activities. Ultrasound Med Biol 2009;35:2093-100.
9. Hofmann A, Ritz U, Rompe JD, Tresch A, Rommens PM. The effect of shock wave therapy on gene expression in human osteoblasts isolated from hypertrophic fracture non-unions. Shock Waves 2015;25:1:91-102.
10. Suhr F, Delhasse Y, Bungartz G, Schmidt A, Pfannkuche K, Bloch W. Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res 2013;11:951-64.
11. Wang CJ, Huang KE, Sun YC, Yang YJ, Ko JY, Weng LH, et al. VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits. J Surg Res 2011;171:114-9.
12. Li B, Wang R, Huang X, Ou Y, Jia Z, Lin S, et al. Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model. Front Endocrinol (Lausanne) 2021;12:627718.
13. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 1997;158:4-11.
14. Alkhawashki HM. Shock wave therapy of fracture nonunion. Injury 2015;46:2248-52.
15. Willems A, Van der Jagt OP, Meuffels DE. Extracorporeal shock wave treatment for delayed union and nonunion fractures: A systematic review. J Orthop Trauma 2019;33:97-103.
16. Sansone V, Ravier D, Pascale V, Applefield R, Del Fabbro M, Martinelli N. Extracorporeal shockwave therapy in the treatment of nonunion in long bones: A systematic review and meta-analysis. J Clin Med 2022;11:1977.
17. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 2001;387:95-101.
18. Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009;91:2589-97. Erratum in: J Bone Joint Surg Am 2010;92:1241.
19. Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 2010;92:846-54.
20. Notarnicola A, Moretti L, Tafuri S, Gigliotti S, Russo S, Musci L, et al. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol 2010;36:1306-13.
21. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–first choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
22. Haffner N, Antonic V, Smolen D, Slezak P, Schaden W, Mittermayr R, et al. Extracorporeal shockwave therapy (ESWT) ameliorates healing of tibial fracture non-union unresponsive to conventional therapy. Injury 2016;47:1506-13.
23. Sandoval C, Valenzuela A, Rojas C, Brañes M, Guiloff L. Extracorporeal shockwave therapy for atrophic and oligotrophic nonunion of tibia and femur in high energy trauma patients. Case series. Int J Surg 2017;9:36-40.


How to Cite this article: Pous J. Focused Shock Waves in Delayed Union and No-union after Intramedullary Nailing in Lower Limbs. Journal of Regenerative Science 2024;January-June;4(1):06-08

[Article Text HTML]       [Full Text PDF] 


Use of Focused Shock Waves in an Acute Talar Head Fracture

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 24-26 | Osvaldo Valle

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.129

Author: Osvaldo Valle [1]

[1] Department of Orthopedic Surgeon Surgery, Ankle and Foot Team, MEDS Clinic, Santiago de Chile; President of ACHITOC (Chilean Association of Tissue Engineering and Shock Waves).

Address of Correspondence
Dr. Osvaldo Valle,
Department of Orthopedic Surgeon, Ankle and Foot Team, MEDS Clinic, Santiago de Chile; President of ACHITOC (Chilean Association of Tissue Engineering and Shock Waves).
E-mail: tovato@gmail.com


Abstract

Talar fractures are rare and can be difficult to manage. Even in the absence of complications, the treatment of this type of injury can be prolonged and uncomfortable for the patient. Focused shock waves have been shown to be effective in the treatment of delayed unions and non-unions. In this case report, we share our experience with the use of focused shock waves in an acute talus fracture in a patient with risk factors for healing.
Keywords: Talus, Talar fractures, Shock waves, Bone marrow edema


References:


1. Caracchini G, Pietragalla M, De Renzis A, Galluzzo M, Carbone M, Zappia M, Russo A, Greco F, Miele V. Talar fractures: radiological and CT evaluation and classification systems. Acta Biomed. 2018 Jan 19;89(1-S):151-165. doi: 10.23750/abm.v89i1-S.7019. PMID: 29350644; PMCID: PMC6179081.
2. Anderson MR, Flemister AS, Ketz JP. Operative Treatment of Talar Head Fractures: Surgical Technique. J Orthop Trauma. 2018 Aug;32(8):e334-e338. doi: 10.1097/BOT.0000000000001178. Erratum in: J Orthop Trauma. 2019 Oct;33(10):e409. doi: 10.1097/BOT.0000000000001596. PMID: 29664882.
3. Pradhan A, Najefi A, Patel A, Vris A, Heidari N, Malagelada F, Parker L, Jeyaseelan L. Complications after talus fractures: A trauma centre experience. Injury. 2023 Feb;54(2):772-777. doi: 10.1016/j.injury.2022.12.013. Epub 2022 Dec 15. PMID: 36543737.
4. Schwartz AM, Runge WO, Hsu AR, Bariteau JT. Fractures of the Talus: Current Concepts. Foot Ankle Orthop. 2020 Feb 13;5(1):2473011419900766. doi: 10.1177/2473011419900766. PMID: 35097362; PMCID: PMC8697161.
5. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
6. Wang CJ, Liu HC, Fu TH. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity. Arch Orthop Trauma Surg. 2007 Feb;127(2):137-42. doi: 10.1007/s00402-006-0236-0. Epub 2006 Oct 13. PMID: 17053946.
7. Vallier HA. Fractures of the Talus: State of the Art. J Orthop Trauma. 2015 Sep;29(9):385-92. doi: 10.1097/BOT.0000000000000378. PMID: 26299809.
8. Higgins TF, Baumgaertner MR. Diagnosis and treatment of fractures of the talus: a comprehensive review of the literature. Foot Ankle Int. 1999 Sep;20(9):595-605. doi: 10.1177/107110079902000911. PMID: 10509689.
9. Jordan RK, Bafna KR, Liu J, Ebraheim NA. Complications of Talar Neck Fractures by Hawkins Classification: A Systematic Review. J Foot Ankle Surg. 2017 Jul-Aug;56(4):817-821. doi: 10.1053/j.jfas.2017.04.013. PMID: 28633784.
10. Ohl X, Harisboure A, Hemery X, Dehoux E. Long-term follow-up after surgical treatment of talar fractures: Twenty cases with an average follow-up of 7.5 years. Int Orthop. 2011 Jan;35(1):93-9. doi: 10.1007/s00264-009-0930-y. Epub 2009 Dec 22. PMID: 20033158; PMCID: PMC3014484.
11. Vallier HA, Nork SE, Barei DP, Benirschke SK, Sangeorzan BJ. Talar neck fractures: results and outcomes. J Bone Joint Surg Am. 2004 Aug;86(8):1616-24. PMID: 15292407.
12. Zura R, Mehta S, Della Rocca GJ, Steen RG. Biological Risk Factors for Nonunion of Bone Fracture. JBJS Rev. 2016 Jan 5;4(1):e5. doi: 10.2106/JBJS.RVW.O.00008. PMID: 27490008.
13. Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, Caraffa A. Obesity and Bone: A Complex Relationship. Int J Mol Sci. 2021 Dec 20;22(24):13662. doi: 10.3390/ijms222413662. PMID: 34948466; PMCID: PMC8706946.
14. Liu SH, Cerri-Droz P, Ling K, Loyst RA, Wang KE, Tsouris N, Komatsu DE, Wang ED. Chronic Steroid Use, Complications, and Readmission Following Open Reduction Internal Fixation of Distal Radius Fracture. J Hand Surg Glob Online. 2023 Aug 19;5(6):757-762. doi: 10.1016/j.jhsg.2023.07.007. PMID: 38106944; PMCID: PMC10721537.
15. Moonen L, Gorter E, Schipper I. The importance of vitamin D in treatment of fracture non-union: A case report. Nutrition. 2021 Jul-Aug;87-88:111192. doi: 10.1016/j.nut.2021.111192. Epub 2021 Feb 10. PMID: 33761443.
16. Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab. 2011 Aug;25(4):585-91. doi: 10.1016/j.beem.2011.05.002. PMID: 21872800.
17. Wang CJ, Wang FS, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg. 2008 Aug;128(8):879-84. doi: 10.1007/s00402-008-0663-1. Epub 2008 Jun 17. PMID: 18560855.


 

How to Cite this article: Valle O. Use of focused shock waves in an acute talar head fracture. Journal of Regenerative Science 2024;January-June;4(1):24-26.

 


[Article Text HTML]       [Full Text PDF] 


20 Years of Treatment of Bone Non-Unions and Delayed Unions with Shock Waves

??? | Vol 4 | Issue 1 |  January-June 2024 | page: 27-30| Paulo F Kertzman

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.131

Author: Paulo F Kertzman [1]

[1] Departamento de Ortopedia, Santa Casa de São Paulo, São Paulo, SP, Brazil.

Address of Correspondence
Dr. Paulo F Kertzman
Departamento de Ortopedia, Santa Casa de São Paulo, São Paulo, SP, Brazil.
E-mail: paulofkertzman@uol.com.br


Abstract

The treatment of bone non-unions continues to be complex and prolonged in many cases. The advent of the use of mechanical waves has made it possible, through the phenomenon of mechanotransduction, to have a non-invasive tool with a low rate of complications.
This study analyzes the experience of the last 20 years with the use of shock waves.

Keywords: Non-union, shock waves, Delayed union, Mechanotransduction


References:


1- Bell A, Templeman D, Weinlein JC. Nonunion of the femur and Tibia: An update. Orthop Clin North Am 2016;47:365-75.
2- Ekegren CL, Edwards ER, de Steiger R, Gabbe BJ. Incidence, Costs and Predictors of Non-Union, Delayed Union and Mal-Union Following Long Bone Fracture. Int J Environ Res Public Health. 2018 Dec 13;15(12):2845. doi: 10.3390/ijerph15122845. PMID: 30551632; PMCID: PMC6313538.
3- Rupp M, Biehl C, Budak M, Thormann U, Heiss C, Alt V. Diaphyseal long bone nonunions – Types, aetiology, economics, and treatment recommendations. Int Orthop 2017;42:247-58.
4- Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–First choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
5- Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 2001;387:95-101.
6- Haupt G, Haupt A, Gerety B, Chvapil M. Enhancement of fracture healing with extracorporeal shock waves. J Urol 1990;158:4.
7- Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15(3):181-4. doi: 10.1007/BF00192289. PMID: 1743828.
8- Main G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M. Influence of shock waves on fracture healing. Urology 1992;39:529-32.
9- Kertzman P, Lenza M, Pedrinelli A, Ejnisman B. Shockwave treatment for musculoskeletal diseases and bone consolidation: Qualitative analysis of the literature. Rev Bras Ortop 2015;50:3-8.
10- Cheng JH, Wang CJ. Biological mechanism of shockwave in bone. Int J Surg. 2015 Dec;24(Pt B):143-6. doi: 10.1016/j.ijsu.2015.06.059. Epub 2015 Jun 25. PMID: 26118613.
11- Schnurrer-Luke-Vrbanić T, Avancini-Dobrović V, Sosa I, Cvijanovic O, Bobinac D. Effect of radial shock wave therapy on long bone fracture repair. J Biol Regul Homeost Agents. 2018 Jul-Aug;32(4):875-879. PMID: 30043570.
12- d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015 Dec;24(Pt B):147-53. doi: 10.1016/j.ijsu.2015.11.030. Epub 2015 Nov 28. PMID: 26612525.
13- Wang CJ, Wang FS, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg. 2008 Aug;128(8):879-84. doi: 10.1007/s00402-008-0663-1. Epub 2008 Jun 17. PMID: 18560855.
14- Ha CH, Kim S, Chung J, An SH, Kwon K. Extracorporeal shock wave stimulates expression of the angiogenic genes via mechanosensory complex in endothelial cells: mimetic effect of fluid shear stress in endothelial cells. Int J Cardiol. 2013 Oct 9;168(4):4168-77. doi: 10.1016/j.ijcard.2013.07.112. Epub 2013 Aug 1. PMID: 23915523.
15- Xu JK, Chen HJ, Li XD, Huang ZL, Xu H, Yang HL, Hu J. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem. 2012 Jul 27;287(31):26200-12. doi: 10.1074/jbc.M112.349811. Epub 2012 May 31. PMID: 22654119; PMCID: PMC3406705.
16- Sun D, Junger WG, Yuan C, Zhang W, Bao Y, Qin D, Wang C, Tan L, Qi B, Zhu D, Zhang X, Yu T. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells. 2013 Jun;31(6):1170-80. doi: 10.1002/stem.1356. PMID: 23404811; PMCID: PMC4243484.
17- Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, et al. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 2004;279:10331-7.
18- Kusnierczak D, Brocai DR, Vettel U, Loew M. Der Einfluss der extrakorporalen Stosswellenapplikation (ESWA) auf das biologische Verhalten von Knochenzellen in vitro [Effect of extracorporeal shockwave administration on biological behavior of bone cells in vitro]. Z Orthop Ihre Grenzgeb. 2000 Jan-Feb;138(1):29-33. German. doi: 10.1055/s-2000-10109. PMID: 10730360.
19- Császár NB, Angstman NB, Milz S, Sprecher CM, Kobel P, Farhat M, Furia JP, Schmitz C. Radial Shock Wave Devices Generate Cavitation. PLoS One. 2015 Oct 28;10(10):e0140541. doi: 10.1371/journal.pone.0140541. PMID: 26509573; PMCID: PMC4625004.
20- Xu ZH, Jiang Q, Chen DY, Xiong J, Shi DQ, Yuan T, Zhu XL. Extracorporeal shock wave treatment in nonunions of long bone fractures. Int Orthop. 2009 Jun;33(3):789-93. doi: 10.1007/s00264-008-0553-8. Epub 2008 Apr 25. PMID: 18437381; PMCID: PMC2903117.
21- Bara T, Synder M. Nine-years experience with the use of shock waves for treatment of bone union disturbances. Ortop Traumatol Rehabil. 2007 May-Jun;9(3):254-8. English, Polish. PMID: 17721422.
22- Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res. 2001 Jun;(387):102-11. doi: 10.1097/00003086-200106000-00014. PMID: 11400870.
23- Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 2001;387:90-4.
24- Vulpiani MC, Vetrano M, Conforti F, Minutolo L, Trischitta D, Furia JP, Ferretti A. Effects of extracorporeal shock wave therapy on fracture nonunions. Am J Orthop (Belle Mead NJ). 2012 Sep;41(9):E122-7. PMID: 23365814.
25- Kuo SJ, Su IC, Wang CJ, Ko JY. Extracorporeal shockwave therapy (ESWT) in the treatment of atrophic non-unions of femoral shaft fractures. Int J Surg. 2015 Dec;24(Pt B):131-4. doi: 10.1016/j.ijsu.2015.06.075. Epub 2015 Jul 9. PMID: 26166737.
26- Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
27- Kertzman P, Császár NB, Furia JP, Schmitz C. Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: A retrospective case series. J Orthop Surg Res 2017;12:164.
28- Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009;91:2589-97.
29- Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 2010;92:846-54.
30- Quadlbauer S, Pezzei C, Beer T, Jurkowitsch J, Keuchel T, Schlintner C, Schaden W, Hausner T, Leixnering M. Treatment of scaphoid waist nonunion by one, two headless compression screws or plate with or without additional extracorporeal shockwave therapy. Arch Orthop Trauma Surg. 2019 Feb;139(2):281-293. doi: 10.1007/s00402-018-3087-6. Epub 2018 Dec 6. PMID: 30523445.
31- Notarnicola A, Moretti L, Tafuri S, Gigliotti S, Russo S, Musci L, Moretti B. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol. 2010 Aug;36(8):1306-13. doi: 10.1016/j.ultrasmedbio.2010.05.004. PMID: 20691920.
32- Schmitz C, Császár NB, Milz S, Schieker M, Maffulli N, Rompe JD, Furia JP. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull. 2015;116(1):115-38. doi: 10.1093/bmb/ldv047. Epub 2015 Nov 18. PMID: 26585999; PMCID: PMC4674007.
33- Birnbaum K, Wirtz DC, Siebert CH, Heller KD. Use of extracorporeal shock-wave therapy (ESWT) in the treatment of non-unions. A review of the literature. Arch Orthop Trauma Surg. 2002 Jul;122(6):324-30. doi: 10.1007/s00402-001-0365-4. Epub 2002 Mar 12. PMID: 12136295.
34- Petrisor B, Lisson S, Sprague S. Extracorporeal shockwave therapy: A systematic review of its use in fracture management. Indian J Orthop. 2009 Apr;43(2):161-7. doi: 10.4103/0019-5413.50851. PMID: 19838365; PMCID: PMC2762266.
35- Willems A, van der Jagt OP, Meuffels DE. Extracorporeal Shock Wave Treatment for Delayed Union and Nonunion Fractures: A Systematic Review. J Orthop Trauma. 2019 Feb;33(2):97-103. doi: 10.1097/BOT.0000000000001361. PMID: 30570614.
36- Schnurrer-Luke-Vrbanic T, Avancini-Dobrovic V, Sosa I, Cvijanovic O, Bobinac D. VEGF-A expression in soft tissues repaired by shockwave therapy: differences between modalities. J Biol Regul Homeost Agents. 2018 May-Jun;32(3):583-588. PMID: 29921384.
37- Gollwitzer H, Gloeck T, Roessner M, Langer R, Horn C, Gerdesmeyer L, et al. Radial extracorporeal shock wave therapy (rESWT) induces new bone formation in vivo: Results of an animal study in rabbits. Ultrasound Med Biol 2013;39:126-33.
38- Diaz-Rodriguez L, Garcia-Marinez O, Arroyo-Morales M, Ramos-Torrecillas J, De Luna-Bertos E, Ruiz C. Effect of radial extracorporeal shock wave therapy on proliferation, cell viability and phagocytosis of human osteoblasts (MG63). Adv Sci Lett 2012;17:325-9.
39- Silk ZM, Alhuwaila RS, Calder JD. Low-energy extracorporeal shock wave therapy to treat lesser metatarsal fracture nonunion: Case report. Foot Ankle Int 2012;33:1128-32.
40- Kertzman PF, Fucs PM. Does radial shock wave therapy works in pseudarthrosis? Prospective analysis of forty four patients. Int Orthop 2021;45:43-9.


 

How to Cite this article: Kertzman PF. 20 Years of Treatment of Non-Unions and Delayed Unions with Shock Waves. Journal of Regenerative Science 2024;January-June;4(1):27-30.

 


[Article Text HTML]       [Full Text PDF] 


Shock Wave Medicine: A Transformative Evolution in Modern Medicine

Original Article | Vol 3 | Issue 2 |  July-December 2023 | page: 05-09 | Sunte Li, Xiaoyu Fan, Wei Sun

DOI: https://doi.org/10.13107/jrs.2023.v03.i02.89


Author: Sunte Li [1], Xiaoyu Fan [2], Wei Sun [3, 4]

[1] Friends Central School, Philadelphia, Pennsylvania, USA,
[2] Department of Surgery, Peking University People’s Hospital, Beijing, China,
[3] Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
[4] Department of Orthopedics, Shockwave Center, China-Japan Friendship Hospital, Chaoyang, Beijing, China.

Address of Correspondence
Dr. Wei Sun,
Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA/Department of Orthopedics, Shockwave Center, China-Japan Friendship Hospital, Chaoyang, Beijing, China.
E-mail: wei.sun@pennmedicine.upenn.edu


Abstract

Since its inception as extracorporeal shock wave lithotripsy in the 1980s, the landscape of medical treatment has been revolutionized by the evolution of shock wave therapy. Over four decades, this therapy, now known as extracorporeal shock wave therapy (ESWT), has emerged as a cornerstone in modern medicine, redefining treatment paradigms across various medical disciplines. Certainly, despite the promising outcomes witnessed in various medical conditions such as musculoskeletal disorders, wound healing, urinary calculi, and erectile dysfunction,
it is crucial to acknowledge that shock wave therapy’s relatively short clinical tenure necessitates a cautious approach. While its effectiveness has been repeatedly demonstrated, establishing industry-standard protocols through large-scale, prospective randomized controlled trials remains imperative to solidify its standing in medical practice.
The integration of Artificial Intelligence technology holds significant promise for the future of shockwave medicine, enabling personalized treatment plans, real-time feedback, and improved cost-effectiveness.
Keywords: Shock waves, ESWT, Shockwave

 


References:

1. Seoane LM, Salvador JB, Alba A, Fentes DA. Technological innovations in shock wave lithotripsy. Actas Urol Esp (Engl Ed) 2024; (48)-1:105-110. https://doi.org/10.1016/j.acuroe.2023.09.001
2. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
3. Porst H. Review of the current status of low intensity extracorporeal shockwave therapy (Li-ESWT) in erectile dysfunction (ED), Peyronie’s disease (PD), and sexual rehabilitation after radical prostatectomy with special focus on technical aspects of the different marketed ESWT devices including personal experiences in 350 patients. Sex Med Rev 2021;9:93-122.
4. Van der Worp H, Van den Akker-Scheek I, Van Schie H, Zwerver J. ESWT for tendinopathy: Technology and clinical implications. Knee Surg Sports Traumatol Arthrosc 2013;21:1451-8.
5. Schroeder AN, Tenforde AS, Jelsing EJ. Extracorporeal shockwave therapy in the management of sports medicine injuries. Curr Sports Med Rep 2021;20:298-305.
6. Wang H, Shi Y. Extracorporeal shock wave treatment for post-surgical fracture nonunion: Insight into its mechanism, efficacy, safety and prognostic factors (Review). Exp Ther Med 2023;26:332.
7. Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JF. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020;11:S309-18.
8. Wigley CH, Janssen TJ, Mosahebi A. Shock wave therapy in plastic surgery: A review of the current indications. Aesthet Surg J 2023;43:370-86.
9. Kuo YR, Wang CT, Wang FS, Chiang YC, Wang CJ. Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen 2009;17:522-30.
10. Lee SY, Joo SY, Cho YS, Hur GY, Seo CH. Effect of extracorporeal shock wave therapy for burn scar regeneration: A prospective, randomized, double-blinded study. Burns 2021;47:821-7.
11. Yao H, Wang X, Liu H, Sun F, Tang G, Bao X et al. Systematic Review and Meta-Analysis of 16 Randomized Controlled Trials of Clinical Outcomes of Low-Intensity Extracorporeal Shock Wave Therapy in Treating Erectile Dysfunction. Am J Mens Health. 2022 Mar-Apr;16(2):15579883221087532. doi: 10.1177/15579883221087532. PMID: 35319291; PMCID: PMC8949743.
12. Dong L, Chang D, Zhang X, Li J, Yang F, Tan K, et al. Effect of low-intensity extracorporeal shock wave on the treatment of erectile dysfunction: A systematic review and meta-analysis. Am J Mens Health 2019;13:2. Published online. Open access: https://journals.sagepub.com/action/showCitFormats?doi=10.1177%2F1557988319846749&mobileUi=0
13. Wu WL, Bamodu OA, Wang YH, Hu SW, Tzou KY, Yeh CT, et al. Extracorporeal shockwave therapy (ESWT) alleviates pain, enhances erectile function and improves quality of Life in patients with chronic prostatitis/chronic pelvic pain syndrome. J Clin Med 2021;3602.
14. Radu CA, Kiefer J, Horn D, Rebel M, Koellensperger E, Gebhard MM, et al. Shock wave treatment in composite tissue allotransplantation. Eplasty 2011;11:e37.
15. Li HX, Zhang ZC, Peng J. Low-intensity extracorporeal shock wave therapy promotes recovery of sciatic nerve injury and the role of mechanical sensitive YAP/TAZ signaling pathway for nerve regeneration. Chin Med J (Engl) 2021;134:2710-20.
16. Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 2011;253:1024-32.
17. Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, et al. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. J Neurosurg 2014;121:1514-25.
18. López-Marín LM, Rivera AL, Fernández F, Loske AM. Shock wave-induced permeabilization of mammalian cells. Phys Life Rev 2018;26-27:1-38.
19. Yeh KH, Sheu JJ, Lin YC, Sun CK, Chang LT, Kao YH, et al. Benefit of combined extracorporeal shock wave and bone marrow-derived endothelial progenitor cells in protection against critical limb ischemia in rats. Crit Care Med 2012;40:169-77.
20. Reichenberger MA, Heimer S, Schaefer A, Lass U, Gebhard MM, Germann G, et al. Extracorporeal shock wave treatment protects skin flaps against ischemia-reperfusion injury. Injury 2012;43:374-80.
21. Sung PH, Fu M, Chiang HJ, Huang CR, Chu CH, Lee MS, et al. Reduced effects of cardiac extracorporeal shock wave therapy on angiogenesis and myocardial function recovery in patients with end-stage coronary artery and renal diseases. Biomed J 2021;44:S201-9.
22. Oktaş B, Orhan Z, Erbil B, Değirmenci E, Ustündağ N. Effect of extracorporeal shock wave therapy on fracture healing in rat femural fractures with intact and excised periosteum. Eklem Hastalik Cerrahisi 2014;25:158-62.
23. Qiao HY, Xin L, Wu SL. Analgesic effect of extracorporeal shock-wave therapy for frozen shoulder: A randomized controlled trial protocol. Medicine (Baltimore) 2020;99:e21399.
24. Fiani B, Davati C, Griepp DW, Lee J, Pennington E, Moawad CM. Enhanced spinal therapy: Extracorporeal shock wave therapy for the spine. Cureus 2020;12:e11200.
25. Özkan E, Şenel E, Bereket MC, Önger ME. The effect of shock waves on mineralization and regeneration of distraction zone in osteoporotic rabbits. Ann Med 2023;55:1346-54.
26. Shi L, Gao F, Sun W, Wang B, Guo W, Cheng L, et al. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients. Osteoporos Int 2017;28:2945-53.
27. Hao L, Liu Y, Wang T, Guo HL, Wang D, Bi YW, et al. Extracorporeal shock wave lithotripsy is safe and effective for geriatric patients with chronic pancreatitis. J Gastroenterol Hepatol 2019;34:466-73.
28. Klang E, Portugez S, Gross R, Lerner KR, Brenner A, Gilboa M, et al. Advantages and pitfalls in utilizing artificial intelligence for crafting medical examinations: A medical education pilot study with GPT-4. BMC Med Educ 2023;23:772.
29. Wójcik S, Rulkiewicz A, Pruszczyk P, Lisik W, Poboży M, Domienik-Karłowicz J. Beyond ChatGPT: What does GPT-4 add to healthcare? The dawn of a new era. Cardiol J 2023;30:1018-25.
30. Mun C, Ha H, Lee O, Cheon M. Enhancing AI-CDSS with U-AnoGAN: Tackling data imbalance. Comput Methods Programs Biomed 2023;244:107954.
31. Palavicini G. Intelligent health: Progress and benefit of artificial intelligence in sensing-based monitoring and disease diagnosis. Sensors (Basel) 2023;23:9053.


How to Cite this article: Li S, Fan X, Sun W. | Shock Wave Medicine: A Transformative Evolution in Modern Medicine. | Journal of Regenerative Science | Jul-Dec 2023; 3(2): 05-09.

 


[Full Text HTML] [Full Text PDF] 


Piezoelectric Shock Wave Sources: Are they Still the Cinderella to Treat Musculoskeletal Disorders?

Technical Notes | Volume 2 | Issue 2 | JRS Jul – Dec 2022 | Page 03-06 | Daniel Moya, Achim M. Loske
DOI: 10.13107/jrs.2022.v02.i02.51

Author: Daniel Moya [1], Achim M. Loske [2]

[1] Department of Orthopaedics, Hospital Británico de Buenos Aires, Argentina,
[2] Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México,
Blvd. Juriquilla 3001, Querétaro, México.

Address of Correspondence
Dr. Daniel Moya, MD
Department of Orthopaedics, Hospital Británico de Buenos Aires, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

There are three types of focused shock wave generators: electrohydraulic, electromagnetic and piezoelectric. Although it has been postulated that there are no differences in clinical efficacy between the three, the information available on the results of the use of piezoelectric generators to treat musculoskeletal disorders is very limited.
The objective of this publication is to demonstrate the little existing evidence on piezoelectric generators and to highlight their versatility and promising future.

Keywords: Musculoskeletal disorders, Shock waves, ESWT, Piezoelectric.


References:

1. Collins English Dictionary. Available from: https://www.collinsdictionary.com/dictionary/english/cinderella [Last accessed on 2022 Feb].
2. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017.
3. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
4. Loske AM, Moya D. Shock waves and radial pressure waves: Time to put a clear nomenclature into practice. J Regen Sci 2021;1:4-8.
5. Schmitz C, Császár NB, Milz S, Schieker M, Maffulli N, Rompe JD, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: Asystematic review on studies listed in the PEDro database. Br Med Bull 2015;116:115-38.
6. National Library of Medicine. National Institutes of Health. Available from: https://www.pubmed.ncbi.nlm.nih.gov [Last accesed on 2022 Jan].
7. Albisetti W, Perugia D, De Bartolomeo O, Tagliabue L, Camerucci E, Calori GM. Stress fractures of the base of the metatarsal bones in young trainee ballet dancers. Int Orthop 2010;34:51-5.
8. Louwerens JK, Sierevelt IN, Kramer ET, Boonstra R, van den Bekerom MP, van Royen BJ, et al. Comparing ultrasound-guided needling combined with a subacromial corticosteroid injection vs high-energy extracorporeal Shockwave therapy for calcific tendinitis of the rotator cuff: A randomized controlled trial. Arthroscopy 2020;36:1823-33.e1.

9. Moya D, Gómez D, Serrano DV, Domínguez PB, Lazzarini ID, Gómez G. Treatment protocol for rotator cuff calcific tendinitis using a single-crystal piezoelectric focused shock wave source. J Vis Exp 2022;190:e64426.
10. Zwerver J, Hartgens F, Verhagen E, van der Worp H, van den Akker-Scheek I, Diercks RL. No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: A randomized clinical trial. Am J Sports Med 2011;39:1191-9.
11. Thijs KM, Zwerver J, Backx FJ, Steeneken V, Rayer S, Groenenboom P, et al. Effectiveness of shockwave treatment combined with eccentric training for patellar tendinopathy: A double-blinded randomized study. Clin J Sport Med 2017;27:89-96.
12. PEDro: Physiotherapy Evidence Database. Available from: https://www.pedro.org.au [Last accessed on 2022Jan].
13. Liang HW, Wang TG, Chen WS, Hou SM. Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy. Clin
Orthop Relat Res 2007;460:219-25.
14. Bannuru RR, Flavin NE, Vaysbrot E, Harvey W, McAlindon T. High-energy extracorporeal shock-wave therapy for treating chronic calcific tendinitis of the shoulder: A systematic review. Ann Intern Med 2014;160:542-9

15. Bechay J, Lawrence C, Namdari S. Calcific tendinopathy of the rotator cuff: A review of operative versus nonoperative management. Phys Sportsmed 2020;48:241-6.
16. Thiele S, Thiele R, Gerdesmeyer L. Lateral epicondylitis: This is still a main indication for extracorporeal shockwave therapy. Int J Surg 2015;24:165-70.
17. Sansone V, Ravier D, Pascale V, Applefield R, Del Fabbro M, Martinelli N. Extracorporeal shockwave therapy in the treatment of nonunion in long bones: Asystematic review and meta-analysis. J Clin Med 2022;11:1977.
18. 23rd 2021 International Society for Medical Shockwave Treatment Congress. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/ISMST_2021_abstractbook_web.pdf [Last accessed on 2022 Feb].
19. Külkens C, Quetz JU, Lippert BM, Folz BJ, Werner JA. Ultrasound-guided piezoelectric extracorporeal shock wave lithotripsy of parotid gland calculi. J Clin Ultrasound 2001;29:389-94.
20. Duarsa GW, Tirtayasa PM, Duarsa GW, Pribadi F. The efficacy and safety of several types of ESWL lithotripters on patient with kidney stone below 2 cm: A meta-analysis and literature review. Teikyo Med J 2022;45:5613-24.

21. Rabenstein T, Radespiel-Tröger M, Höpfner L, Benninger J, Farnbacher M, Greess H, et al. Ten years’ experience with piezoelectric extracorporeal shockwave lithotripsy of gallbladder stones. Eur J Gastroenterol Hepatol 2005;17:629-39.
22. Muller-Ehrenberg H, Licht G. Diagnosis and therapy of myofascial pain syndrome with focused shock waves. Med Orthop Tech 2005;5:1-5.
23. Broegaard A. Extracorporeal shockwave therapy in the treatment of bone disorders: Fracture nonunions, delayed unions, chronic stress fractures and bone marrow edema: A case report series in a private practice setting. J Fract Sprains 2021;2:1008.
24. Moya D, Rodríguez G. Focused Shockwaves in Dental Pathology-Preliminary Report. ISMST22-0038Use. p. 37. Available from: https://www.ismst2022.com/wp-content/uploads/2022/09/ISMST202-programme-and-abstract-book.pdf [Last accessed on 2022 Jan].

 

 


How to Cite this article: Moya D, Loske AM |Piezoelectric Shock Wave Sources: Are they Still the Cinderella to Treat Musculoskeletal Disorders?. | Journal of Regenerative Science | Jul – Dec 2022; 2(2): 03-06.

[Full Text HTML] [Full Text PDF] [XML]


Treatment of a Femoral Shaft Non-union in a Pediatric Patient with Focused Shock Waves

Case Report | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 36-38 | Sebastián Senes1, Gerardo Staudacher2,  Santiago Iglesias1, Daniel Moya1, Rodolfo Goyeneche2

DOI: 10.13107/jrs.2022.v02.i01.45

Author: Sebastián Senes [1], Gerardo Staudacher [2],  Santiago Iglesias [1], Daniel Moya[1], Rodolfo Goyeneche [2]

[1] Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires, Argentina.

[2] Servicio de Ortopedia y Traumatología Infantil, Hospital de Pediatría Garrahan, Buenos Aires, Argentina.

Address of Correspondence
Dr. Daniel Moya, MD,
Hospital Británico de Buenos Aires, Perdriel 74, C1280 AEB, CABA, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

Non-unions of the femur in children are not frequent, but when they do occur they can be very difficult to manage. Shock wave therapy has emerged as an effective option for well-chosen pseudoarthrosis cases, however there are no reports of pediatric cases. We report a 12-year-old male patient with a history of pathological fracture due to mid-diaphyseal osteomyelitis of the right femur at 8 years of age. After several surgical procedures the integrity of the femur was restored but an area of non-unions persisted at mid-diaphyseal level. He was treated with 3 sessions of focused shock waves with an electrohydraulic generator. He presented a rapid consolidation, avoiding a new endomedullary nailing surgery with bone graft.

Focused shock waves may be a useful therapeutic option in children with nonunions in well-selected cases.

Keywords: Pediatric, Fracture non-unions, Shock Waves


References:

1. Lewallen RP, Peterson HA. Nonunion of long bone fractures in children: a review of 30 cases. J Pediatr Orthop. 1985 Mar-Apr;5(2):135-42. PMID: 3988913.

2. Rockwood, Charles A., Kaye E. Wilkins, James H. Beaty, and James R. Kasser. Rockwood and Wilkins’ Fractures in Children. Philadelphia: Lippincott Williams & Wilkins, 2001

3. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15(3):181-4. doi: 10.1007/BF00192289. PMID: 1743828.
4. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
5. Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M. Influence of shock waves on fracture healing. Urology. 1992 Jun;39(6):529-32. doi: 10.1016/0090-4295(92)90009-l. PMID: 1615601.
6. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997 Jul;158(1):4-11. doi: 10.1097/00005392-199707000-00003. PMID: 9186313.
7. Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res. 2001 Jun;(387):102-11. doi: 10.1097/00003086-200106000-00014. PMID: 11400870.
8. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res. 2001 Jun;(387):95-101. doi: 10.1097/00003086-200106000-00013. PMID: 11400901.
9. Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res. 2001 Jun;(387):90-4. doi: 10.1097/00003086-200106000-00012. PMID: 11400900.
10. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. JOrthop Trauma. 2010 Mar; 24(3):133-41.doi: 10.1097/BOT.0b013e3181b26470. PMID: 20182248.
11. Kuo SJ, Su IC, Wang CJ, Ko JY. Extracorporeal shockwave therapy (ESWT) in the treatment of atrophic non-unions of femoral shaft fractures. Int J Surg. 2015 Dec;24(Pt B):131-4. doi: 10.1016/j.ijsu.2015.06.075. Epub 2015 Jul 9. PMID: 26166737.
12. Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, Flamini S, Spacca G, Santilli V. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am. 2009 Nov;91(11):2589-97. doi: 10.2106/JBJS.H.00841. Erratum in: J Bone Joint Surg Am. 2010 May;92(5):1241. PMID: 19884432.
13. Notarnicola A, Moretti L, Tafuri S, Gigliotti S, Russo S, Musci L, Moretti B. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol. 2010 Aug;36(8):1306-13. doi: 10.1016/j.ultrasmedbio.2010.05.004. PMID: 20691920.
14. Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am. 2010 Apr;92(4):846-54. doi: 10.2106/JBJS.I.00653. PMID: 20360507.
15. W. Schaden, M. Pusch, C. Schwab, R. Mittermayr, H. Kuderna. Grundlagen der extrakorporalen Stoßwellentherapie (ESWT) bei Pseudarthrosen. Quality for the treated and practitioners. 47th Annual Meeting, Salzburg, Austria, 2011.
16. International Society for Medical Shockwave Treatment. Indications. https://www.shockwavetherapy.org/about-eswt/indications/ Last Access, June 15th,2022.

 


How to Cite this article: Senes S, Staudacher G, Iglesias S, Moya D, Goyeneche R | Treatment of a femoral shaft non-union in a pediatric patient with focused shock waves | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 36-38.

[Full Text HTML] [Full Text PDF] [XML]


Plantar Fasciopathy, General Concepts, Shock Wave Treatment and Other Additional Therapeutic Considerations

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 39-43 | Osvaldo Valle Toledo. DOI: 10.13107/jrs.2021.v01.i01.021

Author: Osvaldo Valle Toledo [1]

[1] Department of Orthopedics and Traumatology, Ankle Foot Subspecialist, Ankle-Foot Team, MEDS Clinic, Santiago de Chile.

 

Address of Correspondence
Dr. Osvaldo Valle Toledo, MD,
Department of Orthopedics and Traumatology, Ankle Foot Subspecialist, Ankle-Foot Team, MEDS Clinic, Santiago de Chile.
E-mail: osvaldovalletoledo@yahoo.es


Abstract

Plantar fasciopathy is the most common cause of heel pain. It is a primarily degenerative and mechanical overuse pathology. The plantar fascia fulfills important biomechanical functions in the foot, being its “windlass” mechanism, the most important function in this regard, allowing the foot to act as a single and efficient motor unit during gait. Its clinical and imaging diagnosis is fully defined, being Baxter’s nerve entrapment neuropathy, its most significant differential diagnosis. The elongation exercises constitute the basic treatment, being the extracorporeal shock wave therapy of significant utility, amplified in its effects by the association with the referred therapeutic exercises.

Keywords: Plantar fasciitis, shock waves, fasciopathy.


References:

1. Rodríguez. Qué es la Fascia Plantar? 2015. Available from: https://lafisioterapia.net/que-es-la-fascia-plantar [Last accessed on 2021 Dec 12].
2. Buchanan BK, Kushner D. Plantar Fasciitis. Treasure Island, FL: StatPearls Publishing; 2021.
3. Monteagudo M, de Albornoz PM, Gutierrez B, Tabuenca J, Álvarez I. Plantar fasciopathy: A current concepts review. EFORT Open Rev 2018;3:485-93.
4. Pasapula C, Kiliyanpilakkil B, Khan DZ, Di Marco Barros R, Kim S, Ali AM, et al. Plantar fasciitis: Talonavicular instability/spring ligament failure as the driving force behind its histological pathogenesis. Foot (Edinb) 2021;46:101703.
5. Harutaichun P, Boonyong S, Pensri P. Differences in lower-extremity kinematics between the male military personnel with and without plantar fasciitis. Phys Ther Sport 2021;50:130-7.
6. Kirkpatrick J, Yassaie O, Mirjalili SA. The plantar calcaneal spur: A review of anatomy, histology, etiology and key associations. J Anat 2017;230:743-51.
7. Li J, Muehleman C. Anatomic relationship of heel spur to surrounding soft tissues: Greater variability than previously reported. Clin Anat 2007;20:950-5.
8. Díaz-Llopis IV. Despejando dudas sobre la fascitis plantar. XXIX Congreso de la Sociedad Valenciana de Medicina Física y Rehabilitación. Slides Presentation. Available from: https://svmefr.com/wp-content/uploads/2020/03/ISMAEL-DIAZ.pdf [Last accessed on 2021 Dec 12].
9. Forman WM, Green MA. The role of intrinsic musculature in the formation of inferior calcaneal exostoses. Clin Podiatr Med Surg 1990;7:217-23.
10. Acosta TB, Pérez YM, Tápanes SH, Cordero JE, Lottie AG, Aliaga B, et al. Bibliographic review. Rev Iberoamericana Fisiot Kinesiol 2008;11:26-31.

11. Finkenstaedt T, Siriwanarangsun P, Statum S, Biswas R, Anderson KE, Bae WC, et al. The calcaneal crescent in patients with and without plantar fasciitis: An ankle MRI study. AJR Am J Roentgenol 2018;211:1075-82.
12. Arnold MJ, Moody AL. Common running injuries: Evaluation and management. Am Fam Physician 2018;97:510-6.
13. Cotchett M, Lennecke A, Medica VG, Whittaker GA, Bonanno DR. The association between pain catastrophising and kinesiophobia with pain and function in people with plantar heel pain. Foot (Edinb) 2017;32:8-14.
14. Tschopp M, Brunner F. Diseases and overuse injuries of the lower extremities in long distance runners. Z Rheumatol 2017;76:443-50.
15. Baur D, Schwabl C, Kremser C, Taljanovic MS, Widmann G, Sconfienza LM, et al. Shear wave elastography of the plantar fascia: Comparison between patients with plantar fasciitis and healthy control subjects. J Clin Med 2021;10:2351.
16. Schillizzi G, Alviti F, D’Ercole C, Elia D, Agostini F, Mangone M, et al. Evaluation of plantar fasciopathy shear wave elastography: A comparison between patients and healthy subjects. J Ultrasound 2021;24:417-22..
17. Yucel I, Ozturan KE, Demiraran Y, Degirmenci E, Kaynak G. Comparison of high-dose extracorporeal shockwave therapy and intralesional corticosteroid injection in the treatment of plantar fasciitis. J Am Podiatr Med Assoc 2010;100:105-10.
18. Puttaswamaiah R, Chandran P. Degenerative plantar fasciitis: A review of current concepts. Foot 2007;17:3-9.
19. Buchbinder R, Ptasznik R, Gordon J, Buchanan J, Prabaharan V, Forbes A. Ultrasound-guided extracorporeal shock wave therapy for plantar fasciitis: A randomized controlled trial. JAMA 2002;288:1364-72.
20. Aqil A, Siddiqui MR, Solan M, Redfern DJ, Gulati V, Cobb JP. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis: A meta-analysis of RCTs. Clin Orthop Relat Res 2013;471:3645-52..

21. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
22. Sun J, Gao F, Wang Y, Sun W, Jiang B, Li Z. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis: A meta-analysis of RCTs. Medicine (Baltimore) 2017;96:e6621.
23. Chang KV, Chen SY, Chen WS, Tu YK, Chien KL. Comparative effectiveness of focused shock wave therapy of different intensity levels and radial shock wave therapy for treating plantar fasciitis: A systematic review and network meta-analysis. Arch Phys Med Rehabil 2012;93:1259-68.
24. Greve JM, Grecco MV, Santos-Silva PR. Comparison of radial shockwaves and conventional physiotherapy for treating plantar fasciitis. Clinics (Sao Paulo) 2009;64:97-103.
25. Rompe JD, Meurer A, Nafe B, Hofmann A, Gerdesmeyer L. Repetitive low-energy shock wave application without local anesthesia is more efficient than repetitive low-energy shock wave application with local anesthesia in the treatment of chronic plantar fasciitis. J Orthop Res 2005;23:931-41.
26. Haddad S, Yavari P, Mozafari S, Farzinnia S, Mohammadsharifi G. Platelet-rich plasma or extracorporeal shockwave therapy for plantar fasciitis. Int J Burns Trauma 2021;11:1-8.
27. Llurda-Almuzara L, Labata-Lezaun N, Meca-Rivera T, Navarro-Santana MJ, Cleland JA, Fernández-de-Las-Peñas C, et al. Is dry needling effective for the management of plantar heel pain or plantar fasciitis? An updated systematic review and meta-analysis. Pain Med 2021;22:1630-41.
28. DiGiovanni BF, Nawoczenski DA, Lintal ME, Moore EA, Murray JC, Wilding GE, et al. Tissue-specific plantar fascia-stretching exercise enhances outcomes in patients with chronic heel pain. A prospective, randomized study. J Bone Joint Surg Am 2003;85:1270-7.
29. Avilés SG. Efectividad de las Ondas de Choque en la Fascitis Plantar. Revisión Sistemática. España: Alcalá la Real; 2017.
30. Schuitema D, Greve C, Postema K, Dekker R, Hijmans JM. Effectiveness of mechanical treatment for plantar fasciitis: A systematic review. J Sport Rehabil 2019;29:657-74.

31. Weil LS Jr., Roukis TS, Weil LS, Borrelli AH. Extracorporeal shock wave therapy for the treatment of chronic plantar fasciitis: Indications, protocol, intermediate results, and a comparison of results to fasciotomy. J Foot Ankle Surg 2002;41:166-72.
32. Maier M, Steinborn M, Schmitz C, Stäbler A, Köhler S, Pfahler M, et al. Extracorporeal shock wave application for chronic plantar fasciitis associated with heel spurs: Prediction of outcome by magnetic resonance imaging. J Rheumatol 2000;27:2455-62.

 


How to Cite this article: Toledo OV | Plantar Fasciopathy, General Concepts, Shock Wave Treatment and Other Additional Therapeutic Consideration. | Journal of Regenerative Science | Dec 2021; 1(1): 39-43.

[Full Text HTML] [Full Text PDF] [XML]


Shockwave Therapy and Anesthesia: What Evidence is there?

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 13-15 | Paulo Roberto Dias Santos, Bruno Schiefer Dos Santos, Nacime Salomao Barbachan Mansur DOI: 10.13107/jrs.2021.v01.i01.009

Author: Paulo Roberto Dias Santos [1], Bruno Schiefer Dos Santos [1], Nacime Salomao Barbachan Mansur [1,2]

[1] Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

[2] Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, Iowa.

 

Address of Correspondence:
Dr. Nacime Salomao Barbachan Mansur, MD, PhD.
Departamento de Ortopedia e Traumatologia, Disciplina de Ortopedia e Traumatologia, Escola Paulista de Medicina – Universidade Federal de São Paulo, Brazil.
E-mail: nacime@uol.com.br


Abstract

Introduction: The use of anesthetics on extracorporeal shockwave therapy (ESWT) for musculoskeletal disorders is a matter of debate. Although widely performed, especially on focal procedures, its scientific background is sparse. This study aims to review the current evidence
on the use of anesthetics in ESWT.
Methods: A literature review of the PubMed, Web of Science, Embase, EBSCO, and Cochrane Library databases was performed. Studies assessing or comparing the use of any type of anesthetic in any form of shockwave therapy were collected.

Results: After inclusion and exclusion criteria assessment, a total of seven studies were found to directly address the subject and only four were original articles.
Conclusion: The produced evidence is small and lacks methodological quality. These facts support the necessity for new studies using the present technology to determine the real effect of anesthetics on ESWT.

Level of Evidence: Level V. Literature Review

Keywords: Shock waves, Radial pressure waves, Quality standards


Reference:

  1. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012;7:11.
  2. Moya D, Ramon S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  3. Schmitz C, Csaszar NB, Milz S, Schieker M, Maffulli N, Rompe JD, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: A systematic review on studies listed in the PEDro database. Br Med Bull 2015;116:115-38.
  4. Korakakis V, Whiteley R, Tzavara A, Malliaropoulos N. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: A systematic review including quantification of patient-rated pain reduction. Br J Sports Med 2018;52:387-407..
  5. Schaden W, Thiele R, Kolpl C, Pusch M, Nissan A, Attinger CE, et al. Shock wave therapy for acute and chronic soft tissue wounds: A feasibility study. J Surg Res 2007;143:112.
  6. Barbachan Mansur NS, Matsunaga FT, Carrazzone OL, Dias dos Santos P, Schiefer Dos Santos B, Nunes CG, et al. Shockwave therapy plus eccentric exercises versus isolated eccentric exercises for achilles insertional tendinopathy: A double-blinded randomized clinical trial. J Bone Joint Surg Am 2021;103:1295-302.
  7. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–first choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
  8. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
  9. Treatment ISFMS. ISMST Guidelines. Italy: University of Florence; 2019.
  10. Rompe JD, Meurer A, Nafe B, Hofmann A, Gerdesmeyer L. Repetitive low-energy shock wave application without local anesthesia is more efficient than repetitive low-energy shock wave application with local anesthesia in the treatment of chronic plantar fasciitis. J Orthop Res 2005;23:931-41.
  11. Labek G, Auersperg V, Ziernhöld M, Poulios N, Böhler N. Influence of local anesthesia and energy level on the clinical outcome of extracorporeal shock wave-treatment of chronic plantar fasciitis. Z Orthop Ihre Grenzgeb 2005;143:240-6.
  12. Furia JP. High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am J Sports Med 2006;34:733-40.
  13. Klonschinski T, Ament SJ, Schlereth T, Rompe JD, Birklein F. Application of local anesthesia inhibits effects of low-energy extracorporeal shock wave treatment (ESWT) on nociceptors. Pain Med 2011;12:1532-7..
  14. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidences in shockwave treatment. SETOC (spanish society of shockwave treatment) recommendations. Rehabilitacion (Madr) 2021;55:291-300.
  15. Schultheiss R. Stoßwellen-technologie in orthop¨adie undunfallchirurgie. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D, editors. Die Stoßwelle. Forschung und Klinik. Germany: Attempto, Tubingen; 1995.
  16. Lohrer H, Nauck T, Korakakis V, Malliaropoulos N. Historical ESWT paradigms are overcome: A narrative review. Biomed Res Int 2016;2016:3850461.
  17. Maier M, Averbeck B, Milz S, Refior HJ, Schmitz C. Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 2003;406:237-45.
  18. Hausdorf J, Lemmens MA, Kaplan S, Marangoz C, Milz S, Odaci E, et al. Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res 2008;1207:96-101.
  19. Schmitz C, DePace R. Pain relief by extracorporeal shockwave therapy: An update on the current understanding. Urol Res 2009;37:231-4.
  20. Weber M, Birklein F, Neundorfer B, Schmelz M. Facilitated neurogenic inflammation in complex regional pain syndrome. Pain 2001;91:251-7.
  21. Hsieh ST, Lin WM. Modulation of keratinocyte proliferation by skin innervation. J Invest Dermatol 1999;113:579-86.
  22. Goto T, Yamaza T, Kido MA, Tanaka T. Light-and electron-microscopic study of the distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone. Cell Tissue Res 1998;293:87-93.
  23. Brain SD, Williams TJ. Substance P regulates the vasodilator activity of calcitonin gene-related peptide. Nature 1988;335:73-5.
  24. Fischer AA. Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain 1987;30:115-26.

 

 


How to Cite this article: Santos PRD, Dos Santos BS, Mansur NSB | Shockwave therapy and anesthesia: What evidence is there? | Journal of Regenerative Science | December 2021;1(1):13-15.

[Full Text HTML] [Full Text PDF] [XML]


Quality Standards and Techniques for the Application of Focused Shockwaves and Radial Pressure Waves in Musculoskeletal Disorders

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 9-12 | José Eid, Daniel Moya DOI: 10.13107/jrs.2021.v01.i01.007

Author: José Eid [1], Daniel Moya [2]

[1] Médico Assistente do corpo clínico do Hospital Hcor São Paulo, Brazil.

[2] Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.

Address of Correspondence:
Dr. José Eid, MD.
Médico Assistente do corpo clínico do Hospital Hcor São Paulo, Brazil.
E-mail: j.eid@uol.com.br


Abstract

Focused shockwaves and radial pressure waves are safe and effective if used correctly. Nevertheless, poor results and complications have been described due to missdiagnosis and technical errors. The aim of this review is to introduce the basic principles of quality and technical recommendations for each method.

Keywords: Shock waves, Radial pressure waves, Quality standards


Reference:

  1. Delius M, Brendel W. Historical roots of lithotripsy. J Lithotr Stone Dis 1990;2:161-3.
  2. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  3. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
  4. Novak P. Physics: F-SW and R-SW. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L, editors. Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 28-49.
  5. Consenso de la Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular Sobre las Bases Físicas de las Ondas de Choque Focales y de las Ondas de Presión Radial. Available from: https://onlat.net/?page_id=2497 [Last accessed on 2021 June 09].
  6. Eid J. ISMST Consensus Statement Terms and Definitions. https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/Consensus_MBRadial_pressure_wave_2017_SS.pdf [Last accessed on 2021 June 09].
  7. European Commission DG Health and Consumer. Medical Devices: Guidance document. Classification of medical devices. MEDDEV 2. 4/1. Available from: https://pdf4pro.com/download/medical-devices-guidance-document-6fa97.html [Last accessed on 2021 June 09].
  8. Digest Guidelines for Extracorporeal Shockwave Therapy. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/ISMST_Guidelines.pdf [Last accessed on 2021 June 09].
  9. Kibler WB. Value on the front end: Making the effective diagnosis for optimal treatment. Arthroscopy 2017;33:493-5.
  10. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Malos resultados y complicaciones en el uso de ondas de choque focales y ondas de presión radial en patología musculoesquelética [Poor results and complications in the use of focused shockwaves and radial pressure waves in musculoskeletal pathology]. Rehabilitacion (Madr) 2021;2021:00031-1.
  11. International Society for Medical Shockwave Treatment. Consensus Statement on ESWT Indications and Contraindications. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/ISMST_consensus_statement_on_indications_and_contraindications_20161012_final.pdf [Last accessed on 2021 June 09].
  12. Wright JG. Revised grades of recommendation for summaries or reviews of orthopaedic surgical studies. J Bone Joint Surg Am 2006;88:1161-2.
  13. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidences in shockwave treatment. SETOC (Spanish Society of Shockwave Treatment) recommendations. Rehabilitacion (Madr) 2021;55(4):291-300.
  14. Wang CJ, Huang HY, Yang K, Wang FS, Wong M. Pathome-chanism of shock wave injuries on femoral artery, vein andnerve. An experimental study in dogs. Injury. 2002;33:439-46.
  15. Buchbinder R, Ptasznik R, Gordon J, Buchanan J, Prabaharan V, Forbes A. Ultrasound-guided extracorporeal shock wave therapy for plantar fasciitis: A randomized controlled trial. JAMA. 2002;288:1364-72.
  16. Njawaya MM, Moses B, Martens D, Orchard JJ, Driscoll T, Negrine J, et al. Ultrasound guidance does not improve the results of shock wave for plantar fasciitis or calcific achilles tendinopathy: A randomized control trial. Clin J Sport Med 2018;28:21-7.
  17. Charrin JE, Noel ER. Shockwave therapy under ultrasonographic guidance in rotator cuff calcific tendinitis. Jt. Bone Spine 2001;68:241-4.
  18. Sabeti-Aschraf M, Dorotka R, Goll A, Trieb K. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff. Am J Sports 2005;33:1365-8.

 

How to Cite this article: Eid J, Moya D | Quality Standards and Techniques for the Application of Focused Shockwaves and Radial Pressure Waves in Musculoskeletal Disorders. | Journal of Regenerative Science | December 2021; 1(1): 9-12.

[Full Text HTML] [Full Text PDF] [XML]


Shock Waves and Radial Pressure Waves: Time to Put a Clear Nomenclature into Practice

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 4-8 | Achim M. Loske, Daniel Moya DOI: 10.13107/jrs.2021.v01.i01.005

Author: Achim M. Loske [1], Daniel Moya [2]

[1] Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, Qro., 76230, México.

[2] Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.

Address of Correspondence:
Dr. Daniel Moya, MD
Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

Extracorporeal focused shock wave therapy and radial pressure wave therapy are noninvasive approaches with high success rates that hold promise for treating a rapidly increasing number of clinical indications. However, reports, presentations at scientific meetings, and information published by manufacturers reflect confusion in the terminology used. This situation is worrisome because both desired and undesired biological effects depend on the pressure profile and the physical parameters used. Moreover, in many cases, the detailed biological mechanisms involved are yet not fully understood. Only a clear knowledge of the physical concepts can enable comparison among and improvement of treatment protocols and technology. Fortunately, specific definitions and recommendations have been agreed upon by scientific societies promoting international standardization. The main goal of this article is to raise awareness of the importance of having a clear nomenclature worldwide and explain some of the concepts based on the international consensus that has been accepted to date.

Keywords: Shock waves, Radial pressure waves, Physical parameters .


Reference:

  1. Britannica, the Editors of Encyclopaedia. International System of Units. Encyclopedia Britannica, 30 Jul; 2020. Available from: https://www.britannica.com/science/International-System-of-Units [Last accessed on 2021 May 8].
  2. Metric Convention of 1875. US Metric Association. Available from: https://usma.org/laws-and-bills/metric-convention-of-1875 [Last accessed on 2021 May 8].
  3. Delius M, Brendel W. Historical roots of lithotripsy. J Lithotr Stone Dis 1990;2:161-3.
  4. Chaussy C, Eisenberger F, Forssmann B. Epochs in endourology; extracorporeal shockwave lithotripsy (ESWL): A chronology. J Endourol 2007;21:1249-53.
  5. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
  6. Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, et al. Guidelines on Urolithiasis. Arnhem, Netherlands: European Association of Urology; 2015. Available from: https://uroweb.org/wp-content/uploads/22-Urolithiasis_LR_full.pdf [Last accessed on 2021 May 8].
  7. Graff J, Richter KD, Pastor J. Effect of high energy shock waves on bony tissue. Urol Res 1988;16:252-8.
  8. Karpmann RR, Magee FP, Gruen TWS, Mobley T. The lithotriptor and its potential use in the revision of total hip arthroplasty. Orthop Rev 1987;16:38-42.
  9. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
  10. Rompe JD, Rumler F, Hopf C, Nafe B, Heine J. Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin Orthop Relat Res 1995;321:196-201.
  11. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 1997;158:4-11.
  12. Lohrer H, Gerdesmeyer L, editors. Shock wave therapy in practice. In: Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 50-69.
  13. Speed C. A systematic review of shockwave therapies in soft tissue conditions: Focusing on the evidence. Br J Sports Med 2014;48:1538-42.
  14. Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: Technology, mechanisms, and clinical efficacy. Wound Repair Regen 2012;20:456-65..
  15. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  16. Auersperg V. DIGEST Guidelines for Extracorporeal Shock Wave Therapy. Physics and Technology of ESWT. Available from: http://www.setoc.es/docs/DIGEST%20guidelines_June%202019_E_A.pdf [Last accessed on 2021 May 8].
  17. IEC 61846 International Standard Ultrasonics/Pressure Pulse Lithotripters/Characteristics of Fields. Vol. 18. Geneva, Switzerland: International Electrotechnical Commission; 1998.
  18. Ueberle F, Rad AJ. Ballistic pain therapy devices: Measurement of pressure pulse parameters. Biomed Tech 2012;57:700-3.
  19. International Society for Medical Shockwave Therapy: Physical principles of ESWT Basic Physical Principles. Available from: https://www.shockwavetherapy.org/about-eswt/physical-principles-of-eswt [Last accessed on 2021 May 8].
  20. Novak P. Physics: F-SW and R-SW. Shock wave therapy in practice. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L, editors. Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 28-49.
  21. Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular (Onlat) Ondas de Choque en Medicina: La Nueva Frontera. Available from: https://onlat.net/?page_id=2491 [Last accessed on 2021 May 8].
  22. European Commission DG Health and Consumer. Medical Devices: Guidance Document. Classification of medical devices. MEDDEV 2. 4/1 Rev. 9 June 2010. Available from: https://pdf4pro.com/download/medical-devices-guidance-document-6fa97.html [Last accessed on 2021 May 8].
  23. Eid J. ISMST Consensus Statement Terms and Definitions. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/Consensus_MBRadial_pressure_wave_2017_SS.pdf [Last accessed on 2021 May 8].
  24. Consenso de la Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular Sobre las Bases Físicas de las Ondas de Choque Focales y de las Ondas de Presión Radial. Available from: https://onlat.net/?page_id=2497 [Last accessed on 2021 May 8].
  25. Consensus Statement on ESWT Indications and Contraindications. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/ISMST_consensus_statement_on_indications_and_contraindications_20161012_final.pdf [Last accessed on 2021 May 8].
  26. Recommendation Statement of the Conjoint Physics Working Group of ISMST and DIGEST on ESWT study design and publication. ISMST Recommendations. Available from: https://www.shockwavetherapy.org/about-eswt/ismst-recommendations [Last accessed on 2021 May 8].
  27. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Ondas de choque. Evidencias y recomendaciones SETOC (Sociedad Española de Tratamientos con Ondas de Choque). Rehabilitación (Madr) 2021;55:291-300.
  28. Sociedade Médica Brasileira de Tratamento por Ondas de Choque. Physical Features. Available from: https://www.sbtoc.org.br/aspectos-fisicos [Last accessed on 2021 May 8].
  29. Deutschsprachige Internationale Gesellschaft für Extrakorporale Stoßwellentherapie: Technology, Technical Differences. Available from: https://www.digest-ev.de/gesellschaft/geschichte.html [Last accessed on 2021 May 8].

 


How to Cite this article: Loske AM, Moya D | Shock waves and radial pressure waves: time to put a clear nomenclature into practice. | Journal of Regenerative Science | December 2021; 1(1): 4-8.

[Full Text HTML] [Full Text PDF] [XML]