Posts

Shock Wave Medicine: A Transformative Evolution in Modern Medicine

Original Article | Vol 3 | Issue 2 |  July-December 2023 | page: 05-09 | Sunte Li, Xiaoyu Fan, Wei Sun

DOI: https://doi.org/10.13107/jrs.2023.v03.i02.89


Author: Sunte Li [1], Xiaoyu Fan [2], Wei Sun [3, 4]

[1] Friends Central School, Philadelphia, Pennsylvania, USA,
[2] Department of Surgery, Peking University People’s Hospital, Beijing, China,
[3] Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
[4] Department of Orthopedics, Shockwave Center, China-Japan Friendship Hospital, Chaoyang, Beijing, China.

Address of Correspondence
Dr. Wei Sun,
Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA/Department of Orthopedics, Shockwave Center, China-Japan Friendship Hospital, Chaoyang, Beijing, China.
E-mail: wei.sun@pennmedicine.upenn.edu


Abstract

Since its inception as extracorporeal shock wave lithotripsy in the 1980s, the landscape of medical treatment has been revolutionized by the evolution of shock wave therapy. Over four decades, this therapy, now known as extracorporeal shock wave therapy (ESWT), has emerged as a cornerstone in modern medicine, redefining treatment paradigms across various medical disciplines. Certainly, despite the promising outcomes witnessed in various medical conditions such as musculoskeletal disorders, wound healing, urinary calculi, and erectile dysfunction,
it is crucial to acknowledge that shock wave therapy’s relatively short clinical tenure necessitates a cautious approach. While its effectiveness has been repeatedly demonstrated, establishing industry-standard protocols through large-scale, prospective randomized controlled trials remains imperative to solidify its standing in medical practice.
The integration of Artificial Intelligence technology holds significant promise for the future of shockwave medicine, enabling personalized treatment plans, real-time feedback, and improved cost-effectiveness.
Keywords: Shock waves, ESWT, Shockwave

 


References:

1. Seoane LM, Salvador JB, Alba A, Fentes DA. Technological innovations in shock wave lithotripsy. Actas Urol Esp (Engl Ed) 2024; (48)-1:105-110. https://doi.org/10.1016/j.acuroe.2023.09.001
2. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
3. Porst H. Review of the current status of low intensity extracorporeal shockwave therapy (Li-ESWT) in erectile dysfunction (ED), Peyronie’s disease (PD), and sexual rehabilitation after radical prostatectomy with special focus on technical aspects of the different marketed ESWT devices including personal experiences in 350 patients. Sex Med Rev 2021;9:93-122.
4. Van der Worp H, Van den Akker-Scheek I, Van Schie H, Zwerver J. ESWT for tendinopathy: Technology and clinical implications. Knee Surg Sports Traumatol Arthrosc 2013;21:1451-8.
5. Schroeder AN, Tenforde AS, Jelsing EJ. Extracorporeal shockwave therapy in the management of sports medicine injuries. Curr Sports Med Rep 2021;20:298-305.
6. Wang H, Shi Y. Extracorporeal shock wave treatment for post-surgical fracture nonunion: Insight into its mechanism, efficacy, safety and prognostic factors (Review). Exp Ther Med 2023;26:332.
7. Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JF. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020;11:S309-18.
8. Wigley CH, Janssen TJ, Mosahebi A. Shock wave therapy in plastic surgery: A review of the current indications. Aesthet Surg J 2023;43:370-86.
9. Kuo YR, Wang CT, Wang FS, Chiang YC, Wang CJ. Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen 2009;17:522-30.
10. Lee SY, Joo SY, Cho YS, Hur GY, Seo CH. Effect of extracorporeal shock wave therapy for burn scar regeneration: A prospective, randomized, double-blinded study. Burns 2021;47:821-7.
11. Yao H, Wang X, Liu H, Sun F, Tang G, Bao X et al. Systematic Review and Meta-Analysis of 16 Randomized Controlled Trials of Clinical Outcomes of Low-Intensity Extracorporeal Shock Wave Therapy in Treating Erectile Dysfunction. Am J Mens Health. 2022 Mar-Apr;16(2):15579883221087532. doi: 10.1177/15579883221087532. PMID: 35319291; PMCID: PMC8949743.
12. Dong L, Chang D, Zhang X, Li J, Yang F, Tan K, et al. Effect of low-intensity extracorporeal shock wave on the treatment of erectile dysfunction: A systematic review and meta-analysis. Am J Mens Health 2019;13:2. Published online. Open access: https://journals.sagepub.com/action/showCitFormats?doi=10.1177%2F1557988319846749&mobileUi=0
13. Wu WL, Bamodu OA, Wang YH, Hu SW, Tzou KY, Yeh CT, et al. Extracorporeal shockwave therapy (ESWT) alleviates pain, enhances erectile function and improves quality of Life in patients with chronic prostatitis/chronic pelvic pain syndrome. J Clin Med 2021;3602.
14. Radu CA, Kiefer J, Horn D, Rebel M, Koellensperger E, Gebhard MM, et al. Shock wave treatment in composite tissue allotransplantation. Eplasty 2011;11:e37.
15. Li HX, Zhang ZC, Peng J. Low-intensity extracorporeal shock wave therapy promotes recovery of sciatic nerve injury and the role of mechanical sensitive YAP/TAZ signaling pathway for nerve regeneration. Chin Med J (Engl) 2021;134:2710-20.
16. Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 2011;253:1024-32.
17. Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, et al. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. J Neurosurg 2014;121:1514-25.
18. López-Marín LM, Rivera AL, Fernández F, Loske AM. Shock wave-induced permeabilization of mammalian cells. Phys Life Rev 2018;26-27:1-38.
19. Yeh KH, Sheu JJ, Lin YC, Sun CK, Chang LT, Kao YH, et al. Benefit of combined extracorporeal shock wave and bone marrow-derived endothelial progenitor cells in protection against critical limb ischemia in rats. Crit Care Med 2012;40:169-77.
20. Reichenberger MA, Heimer S, Schaefer A, Lass U, Gebhard MM, Germann G, et al. Extracorporeal shock wave treatment protects skin flaps against ischemia-reperfusion injury. Injury 2012;43:374-80.
21. Sung PH, Fu M, Chiang HJ, Huang CR, Chu CH, Lee MS, et al. Reduced effects of cardiac extracorporeal shock wave therapy on angiogenesis and myocardial function recovery in patients with end-stage coronary artery and renal diseases. Biomed J 2021;44:S201-9.
22. Oktaş B, Orhan Z, Erbil B, Değirmenci E, Ustündağ N. Effect of extracorporeal shock wave therapy on fracture healing in rat femural fractures with intact and excised periosteum. Eklem Hastalik Cerrahisi 2014;25:158-62.
23. Qiao HY, Xin L, Wu SL. Analgesic effect of extracorporeal shock-wave therapy for frozen shoulder: A randomized controlled trial protocol. Medicine (Baltimore) 2020;99:e21399.
24. Fiani B, Davati C, Griepp DW, Lee J, Pennington E, Moawad CM. Enhanced spinal therapy: Extracorporeal shock wave therapy for the spine. Cureus 2020;12:e11200.
25. Özkan E, Şenel E, Bereket MC, Önger ME. The effect of shock waves on mineralization and regeneration of distraction zone in osteoporotic rabbits. Ann Med 2023;55:1346-54.
26. Shi L, Gao F, Sun W, Wang B, Guo W, Cheng L, et al. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients. Osteoporos Int 2017;28:2945-53.
27. Hao L, Liu Y, Wang T, Guo HL, Wang D, Bi YW, et al. Extracorporeal shock wave lithotripsy is safe and effective for geriatric patients with chronic pancreatitis. J Gastroenterol Hepatol 2019;34:466-73.
28. Klang E, Portugez S, Gross R, Lerner KR, Brenner A, Gilboa M, et al. Advantages and pitfalls in utilizing artificial intelligence for crafting medical examinations: A medical education pilot study with GPT-4. BMC Med Educ 2023;23:772.
29. Wójcik S, Rulkiewicz A, Pruszczyk P, Lisik W, Poboży M, Domienik-Karłowicz J. Beyond ChatGPT: What does GPT-4 add to healthcare? The dawn of a new era. Cardiol J 2023;30:1018-25.
30. Mun C, Ha H, Lee O, Cheon M. Enhancing AI-CDSS with U-AnoGAN: Tackling data imbalance. Comput Methods Programs Biomed 2023;244:107954.
31. Palavicini G. Intelligent health: Progress and benefit of artificial intelligence in sensing-based monitoring and disease diagnosis. Sensors (Basel) 2023;23:9053.


How to Cite this article: Li S, Fan X, Sun W. | Shock Wave Medicine: A Transformative Evolution in Modern Medicine. | Journal of Regenerative Science | Jul-Dec 2023; 3(2): 05-09.

 


[Full Text HTML] [Full Text PDF] 


Cardiac Shock Wave Therapy in Cardiovascular Diseases

Review Article | Vol 3 | Issue 2 | July-December 2023 | page: 81-86 | Na Chen, Hanhua Ji

DOI: https://doi.org/10.13107/jrs.2023.v03.i02.115


Author: Na Chen [1], Hanhua Ji [2]

[1] Department of Internal Medicine, Peking University Hospital, Beijing 100871, China.
[2] Department of Cardiovascular Medicine, Peking University Civil Aviation General Hospital, Beijing 100123, China.

Address of Correspondence

Dr. Na Chen,
Department of Internal Medicine, Peking University Hospital, Beijing 100871, China.
E-mail: 18901267905@163.com


Abstract

Cardiovascular disease is one of the leading causes of death worldwide, placing a huge burden on patients and healthcare systems. Cardiac shock wave (CSW) technology is a non-invasive treatment method. In recent years, some scholars have discovered that extracorporeal shock wave can improve cardiovascular ischemic lesions. This article reviews the latest progress in basic research and clinical application of cardiac shock wave technology in cardiovascular medicine and reviews its efficacy and potential mechanisms in different diseases. First, the principle of shock waves and their application potential in cardiovascular medicine are introduced. Then, from the aspects of basic research and clinical application, the mechanism and clinical efficacy of shock waves in cardiovascular diseases such as coronary heart disease, myocardial ischemia-reperfusion injury, atrial fibrillation, atherosclerosis, and coronary artery calcification are discussed, as well as its advantages and limitations. Animal experiments and clinical studies have found that low-energy extracorporeal shock waves can upregulate the expression of vascular endothelial
growth factors, promote angiogenesis, promote nitric oxide production, increase local blood perfusion, significantly reduce angina symptoms, and improve left ventricular function and remodeling. Finally, the future development trend of shock wave technology is prospected. This review provides an introduction to the properties, biomechanical effects, treatment mechanisms of cardiovascular diseases, research status and development prospects of extracorporeal shock waves.
Keywords: Cardiac shock Wave Therapy, Cardiovascular diseases, ESWT


References:

1. Yeates K, Lohfeld L, Sleeth J, et al. A global perspective on cardiovascular disease in vulnerable populations. Canadian Journal of Cardiology, 2015, 31(9): 1081-1093.
2. Burneikaitė G, Shkolnik E, Čelutkienė J, et al. Cardiac shock-wave therapy in the treatment of coronary artery disease: systematic review and meta-analysis. Cardiovascular ultrasound, 2017, 15: 1-13.
3. Wang Y, Guo T, Ma T, et al. A modified regimen of extracorporeal cardiac shock wave therapy for treatment of coronary artery disease. Cardiovascular Ultrasound, 2012, 10: 1-10.
4. Yang H T, Xie X, Hou X G, et al. Cardiac shock wave therapy for coronary heart disease: an updated meta-analysis. Brazilian Journal of Cardiovascular Surgery, 2020, 35: 741-756.
5. Jia N, Zhang R, Liu B, et al. Efficacy and safety of cardiac shock wave therapy for patients with severe coronary artery disease: a randomized, double-blind control study. Journal of Nuclear Cardiology, 2021: 1-16.
6. Di Meglio F, Nurzynska D, Castaldo C, et al. Cardiac shock wave therapy: assessment of safety and new insights into mechanisms of tissue regeneration. Journal of cellular and molecular medicine, 2012, 16(4): 936-942.
7. Wu X, Gu M, Ma Y, et al. Observation of the effectiveness of clinical indicators of cardiac shock wave therapy in patients with ischemic heart disease: A systematic review and meta-analysis. Frontiers in Cardiovascular Medicine, 2023, 10: 1088811.
8. Shrivastava S K, Kailash. Shock wave treatment in medicine. Journal of biosciences, 2005, 30: 269-275.
9. Zhang Q, Liu L, Sun W, et al. Extracorporeal shockwave therapy in osteonecrosis of femoral head: a systematic review of now available clinical evidences. Medicine, 2017, 96(4).
10. Karimi Galougahi K, Patel S, Shlofmitz R A, et al. Calcific plaque modification by acoustic shock waves: intravascular lithotripsy in coronary interventions. Circulation: Cardiovascular Interventions, 2021, 14(1): e009354.
11. Wang M, Yang D, Hu Z, et al. Extracorporeal Cardiac Shock Waves Therapy Improves the Function of Endothelial Progenitor Cells After Hypoxia Injury via Activating PI3K/Akt/eNOS Signal Pathway. Frontiers in Cardiovascular Medicine, 2021, 8: 747497.
12. Shao P L, Chiu C C, Yuen C M, et al. Shock wave therapy effectively attenuates inflammation in rat carotid artery following endothelial denudation by balloon catheter. Cardiology, 2010, 115(2): 130-144.
13. Fukumoto Y, Ito A, Uwatoku T, et al. Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coronary artery disease, 2006, 17(1): 63-70.
14. Peng Y Z, Zheng K, Yang P, et al. Shock wave treatment enhances endothelial proliferation via autocrine vascular endothelial growth factor. Genet Mol Res, 2015, 14(4): 19203-19210.
15. Petrusca L, Croisille P, Augeul L, et al. Cardioprotective effects of shock wave therapy: A cardiac magnetic resonance imaging study on acute ischemia-reperfusion injury. Frontiers in Cardiovascular Medicine, 2023, 10: 1134389.
16. Qiu Q, Shen T, Yu X, et al. Cardiac shock wave therapy alleviates hypoxia/reoxygenation-induced myocardial necroptosis by modulating autophagy. BioMed Research International, 2021, 2021.
17. Ito K, Fukumoto Y, Shimokawa H. Extracorporeal shock wave therapy for ischemic cardiovascular disorders. American Journal of Cardiovascular Drugs, 2011, 11: 295-302.
18. Wong B, El-Jack S, Newcombe R, et al. Shockwave intravascular lithotripsy for calcified coronary lesions: first real-world experience. Heart, Lung and Circulation, 2019, 28: S7-S8.
19. Brinton T J, Ali Z A, Hill J M, et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses: first description. Circulation, 2019, 139(6): 834-836.
20. Kassimis G, Didagelos M, De Maria G L, et al. Shockwave intravascular lithotripsy for the treatment of severe vascular calcification. Angiology, 2020, 71(8): 677-688.
21. Kassimis G, Ziakas A, Didagelos M, et al. Shockwave coronary intravascular lithotripsy system for heavily calcified de novo lesions and the need for a cost-effectiveness analysis. Cardiovascular Revascularization Medicine, 2022, 37: 128-134.
22. Hill J M, Kereiakes D J, Shlofmitz R A, et al. Intravascular lithotripsy for treatment of severely calcified coronary artery disease. Journal of the American College of Cardiology, 2020, 76(22): 2635-2646.
23. Nishida T, Shimokawa H, Oi K, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation, 2004, 110(19): 3055-3061.
24. Yang P, Guo T, Wang W, et al. Randomized and double-blind controlled clinical trial of extracorporeal cardiac shock wave therapy for coronary heart disease. Heart and vessels, 2013, 28: 284-291.
25. Wang W, Liu H, Song M, et al. Clinical effect of cardiac shock wave therapy on myocardial ischemia in patients with ischemic heart failure. Journal of cardiovascular pharmacology and therapeutics, 2016, 21(4): 381-387.
26. Zhang Y, Shen T, Liu B, et al. Cardiac shock wave therapy attenuates cardiomyocyte apoptosis after acute myocardial infarction in rats. Cellular Physiology and Biochemistry, 2018, 49(5): 1734-1746.
27. Wang Y, Guo T, Cai H Y, et al. Cardiac shock wave therapy reduces angina and improves myocardial function in patients with refractory coronary artery disease. Clinical cardiology, 2010, 33(11): 693-699.
28. Alunni G, Marra S, Meynet I, et al. The beneficial effect of extracorporeal shockwave myocardial revascularization in patients with refractory angina. Cardiovascular Revascularization Medicine, 2015, 16(1): 6-11.
29. Nudi F, Tomai F. Is Cardiac Shock Wave Therapy an Option for the Treatment of Myocardial Ischemia in Patients with Refractory Angina?. Journal of Nuclear Cardiology, 2022, 29(5): 2420-2422.
30. Aissaoui N, Puymirat E, Delmas C, et al. Trends in cardiogenic shock complicating acute myocardial infarction. European Journal of Heart Failure, 2020, 22(4): 664-672.
31. Li Y H, Hsu C Y, Liu C T, et al. Synchronized extracorporeal shockwave lithotripsy may still affect the heart: a case report of perioperative ST-segment elevation myocardial infarction. Frontiers in Medicine, 2023, 10: 1147725.
32. Kereiakes D J, Virmani R, Hokama J Y, et al. Principles of intravascular lithotripsy for calcific plaque modification. Cardiovascular Interventions, 2021, 14(12): 1275-1292.
33. Abe Y, Ito K, Hao K, et al. Extracorporeal low-energy shock-wave therapy exerts anti-inflammatory effects in a rat model of acute myocardial infarction. Circulation Journal, 2014, 78(12): 2915-2925.
34. Kagaya Y, Ito K, Takahashi J, et al. Low-energy cardiac shockwave therapy to suppress left ventricular remodeling in patients with acute myocardial infarction: a first-in-human study. Coronary artery disease, 2018, 29(4): 294-300.
35. Peng Y Z, Guo T, Yang P, et al. Effects of extracorporeal cardiac shock wave therapy in patients with ischemic heart failure. Zhonghua Xin Xue Guan Bing Za Zhi, 2012, 40(2): 141-146.
36. Pölzl L, Nägele F, Hirsch J, et al. Defining a therapeutic range for regeneration of ischemic myocardium via shock waves. Scientific Reports, 2021, 11(1): 409.
37. Myojo M, Ando J, Uehara M, et al. Feasibility of extracorporeal shock wave myocardial revascularization therapy for post-acute myocardial infarction patients and refractory angina pectoris patients. International heart journal, 2017, 58(2): 185-190.
38. Holfeld J, Zimpfer D, Albrecht‐Schgoer K, et al. Epicardial shock‐wave therapy improves ventricular function in a porcine model of ischaemic heart disease. Journal of tissue engineering and regenerative medicine, 2016, 10(12): 1057-1064.
39. Jargin S V. Shock wave therapy of ischemic heart disease in the light of general pathology. International journal of cardiology, 2010, 144(1): 116-117.
40. Raza A, Harwood A, Totty J, et al. Extracorporeal shockwave therapy for peripheral arterial disease: a review of the potential mechanisms of action. Annals of vascular surgery, 2017, 45: 294-298.
41. Mariotto S, de Prati A C, Cavalieri E, et al. Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action. Current medicinal chemistry, 2009, 16(19): 2366-2372.
42. Leu S, Huang T H, Chen Y L, et al. Effect of extracorporeal shockwave on angiogenesis and anti-inflammation: Molecular-cellular signaling pathways[M]//Shockwave Medicine. Karger Publishers, 2018, 6: 109-116.

 


How to Cite this article: Chen N, Ji H Cardiac Shock Wave | Therapy in cardiovascular diseases | Journal of Regenerative Science | Jul-Dec 2023; 3(2): 81-86.

 

[Full Text HTML] [Full Text PDF] 


Piezoelectric Shock Wave Sources: Are they Still the Cinderella to Treat Musculoskeletal Disorders?

Technical Notes | Volume 2 | Issue 2 | JRS Jul – Dec 2022 | Page 03-06 | Daniel Moya, Achim M. Loske
DOI: 10.13107/jrs.2022.v02.i02.51

Author: Daniel Moya [1], Achim M. Loske [2]

[1] Department of Orthopaedics, Hospital Británico de Buenos Aires, Argentina,
[2] Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México,
Blvd. Juriquilla 3001, Querétaro, México.

Address of Correspondence
Dr. Daniel Moya, MD
Department of Orthopaedics, Hospital Británico de Buenos Aires, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

There are three types of focused shock wave generators: electrohydraulic, electromagnetic and piezoelectric. Although it has been postulated that there are no differences in clinical efficacy between the three, the information available on the results of the use of piezoelectric generators to treat musculoskeletal disorders is very limited.
The objective of this publication is to demonstrate the little existing evidence on piezoelectric generators and to highlight their versatility and promising future.

Keywords: Musculoskeletal disorders, Shock waves, ESWT, Piezoelectric.


References:

1. Collins English Dictionary. Available from: https://www.collinsdictionary.com/dictionary/english/cinderella [Last accessed on 2022 Feb].
2. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017.
3. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
4. Loske AM, Moya D. Shock waves and radial pressure waves: Time to put a clear nomenclature into practice. J Regen Sci 2021;1:4-8.
5. Schmitz C, Császár NB, Milz S, Schieker M, Maffulli N, Rompe JD, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: Asystematic review on studies listed in the PEDro database. Br Med Bull 2015;116:115-38.
6. National Library of Medicine. National Institutes of Health. Available from: https://www.pubmed.ncbi.nlm.nih.gov [Last accesed on 2022 Jan].
7. Albisetti W, Perugia D, De Bartolomeo O, Tagliabue L, Camerucci E, Calori GM. Stress fractures of the base of the metatarsal bones in young trainee ballet dancers. Int Orthop 2010;34:51-5.
8. Louwerens JK, Sierevelt IN, Kramer ET, Boonstra R, van den Bekerom MP, van Royen BJ, et al. Comparing ultrasound-guided needling combined with a subacromial corticosteroid injection vs high-energy extracorporeal Shockwave therapy for calcific tendinitis of the rotator cuff: A randomized controlled trial. Arthroscopy 2020;36:1823-33.e1.

9. Moya D, Gómez D, Serrano DV, Domínguez PB, Lazzarini ID, Gómez G. Treatment protocol for rotator cuff calcific tendinitis using a single-crystal piezoelectric focused shock wave source. J Vis Exp 2022;190:e64426.
10. Zwerver J, Hartgens F, Verhagen E, van der Worp H, van den Akker-Scheek I, Diercks RL. No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: A randomized clinical trial. Am J Sports Med 2011;39:1191-9.
11. Thijs KM, Zwerver J, Backx FJ, Steeneken V, Rayer S, Groenenboom P, et al. Effectiveness of shockwave treatment combined with eccentric training for patellar tendinopathy: A double-blinded randomized study. Clin J Sport Med 2017;27:89-96.
12. PEDro: Physiotherapy Evidence Database. Available from: https://www.pedro.org.au [Last accessed on 2022Jan].
13. Liang HW, Wang TG, Chen WS, Hou SM. Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy. Clin
Orthop Relat Res 2007;460:219-25.
14. Bannuru RR, Flavin NE, Vaysbrot E, Harvey W, McAlindon T. High-energy extracorporeal shock-wave therapy for treating chronic calcific tendinitis of the shoulder: A systematic review. Ann Intern Med 2014;160:542-9

15. Bechay J, Lawrence C, Namdari S. Calcific tendinopathy of the rotator cuff: A review of operative versus nonoperative management. Phys Sportsmed 2020;48:241-6.
16. Thiele S, Thiele R, Gerdesmeyer L. Lateral epicondylitis: This is still a main indication for extracorporeal shockwave therapy. Int J Surg 2015;24:165-70.
17. Sansone V, Ravier D, Pascale V, Applefield R, Del Fabbro M, Martinelli N. Extracorporeal shockwave therapy in the treatment of nonunion in long bones: Asystematic review and meta-analysis. J Clin Med 2022;11:1977.
18. 23rd 2021 International Society for Medical Shockwave Treatment Congress. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/ISMST_2021_abstractbook_web.pdf [Last accessed on 2022 Feb].
19. Külkens C, Quetz JU, Lippert BM, Folz BJ, Werner JA. Ultrasound-guided piezoelectric extracorporeal shock wave lithotripsy of parotid gland calculi. J Clin Ultrasound 2001;29:389-94.
20. Duarsa GW, Tirtayasa PM, Duarsa GW, Pribadi F. The efficacy and safety of several types of ESWL lithotripters on patient with kidney stone below 2 cm: A meta-analysis and literature review. Teikyo Med J 2022;45:5613-24.

21. Rabenstein T, Radespiel-Tröger M, Höpfner L, Benninger J, Farnbacher M, Greess H, et al. Ten years’ experience with piezoelectric extracorporeal shockwave lithotripsy of gallbladder stones. Eur J Gastroenterol Hepatol 2005;17:629-39.
22. Muller-Ehrenberg H, Licht G. Diagnosis and therapy of myofascial pain syndrome with focused shock waves. Med Orthop Tech 2005;5:1-5.
23. Broegaard A. Extracorporeal shockwave therapy in the treatment of bone disorders: Fracture nonunions, delayed unions, chronic stress fractures and bone marrow edema: A case report series in a private practice setting. J Fract Sprains 2021;2:1008.
24. Moya D, Rodríguez G. Focused Shockwaves in Dental Pathology-Preliminary Report. ISMST22-0038Use. p. 37. Available from: https://www.ismst2022.com/wp-content/uploads/2022/09/ISMST202-programme-and-abstract-book.pdf [Last accessed on 2022 Jan].

 

 


How to Cite this article: Moya D, Loske AM |Piezoelectric Shock Wave Sources: Are they Still the Cinderella to Treat Musculoskeletal Disorders?. | Journal of Regenerative Science | Jul – Dec 2022; 2(2): 03-06.

[Full Text HTML] [Full Text PDF] [XML]