Posts

Novel Extracorporeal Magnetotransduction Therapy with Magnetolith® and Focused Electromagnetic Extracorporeal Shockwave Therapy in Medial Meniscal Tear – A Case Report

Case Report | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 32-35 | Karsten Knobloch

DOI: 10.13107/jrs.2022.v02.i01.43

Author: Karsten Knobloch [1]

[1] Sport Praxis Prof. Knobloch, Hannover, Germany.

Address of Correspondence
Prof. Dr. Karsten Knobloch,
Heiligerstr. 3, Hannover – 30159, Germany.
E-mail: professor.knobloch@sportpraxis-knobloch.de


Abstract

The case report describes a non-invasive combination of novel extracorporeal magnetotransduction therapy (EMTT) with focused extracorporeal shockwave therapy for symptomatic medial meniscal tear in a 41-year-old gentleman. Ultra-high-frequency 33 MHz ultrasound revealed a complex medial meniscal tear with a ganglion confirmed by subsequent magnetic resonance imaging. Non-invasive treatment with combined novel Magnetolith® EMTT with focused electromagnetic extracorporeal shockwave therapy for three sessions on a weekly interval. Shear wave elastography at 6 months demonstrated comparable stiffness of the healed and the healthy contralateral meniscus. The healing of the meniscal tear could be depicted by multiparametric ultra-high-frequency ultrasound (33 MHz) with novel stress testing and shear wave elastography.

Keywords: Magnetic field, Extracorporeal shockwave therapy, Extracorporeal shockwave therapy, Meniscal, Ultrasound, Pain


References:

1. Avendaño-Coy J, Comino-Suárez N, Grande-Muñoz J, Avendaño-López C, Gómez-Soriano J. Extracorporeal shockwave therapy improves pain and function in subjects with knee osteoarthritis: A systematic review and meta-analysis of randomized clinical trials. Int J Surg 2020;82:64-75.
2. Bedewi MA, Elsifey AA, Saleh AK, Alfaifi T. Shear wave elastography of the knee menisci. J Int Med Res 2020;48:300060520976048.
3. Beutler S, Regel G, Pape HC, Machtens S, Weinberg AM, Kremeike I, et al. Extracorporeal shock wave therapy for delayed union of long bone fractures – Preliminary results of a prospective cohort study. Unfallchirurg 1999;102:839-47.
4. Lu CC, Chou SH, Shen PC, Chou PH, Ho ML, Tien YC. Extracorporeal shock wave promotes activation of anterior cruciate ligament remnant cells and their paracrine regulation of bone marrow stromal cells’ proliferation, migration, collagen synthesis, and differentiation. Bone Joint Res 2020;9:458-68..
5. d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg 2015;24:147-53.
6. Gollmann-Tepeköylü C, Pölzl L, Graber M, Hirsch J, Nägele F, Lobenwein D, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovasc Res 2020;116:1226-36.
7. Hashimoto S, Ichinose T, Ohsawa T, Koibuchi N, Chikuda H. Extracorporeal shockwave therapy accelerates the healing of a meniscal tear in the avascular region in a rat model. Am J Sports Med 2019;47:2937-44.
8. Hsu CC, Cheng JH, Wang CJ, Ko JY, Hsu SL, Hsu TC. Shockwave therapy combined with autologous adipose-derived mesenchymal stem cells is better than with human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells on knee osteoarthritis. Int J Mol Sci 2020;21:1217.
9. Knobloch K. Novel extracorporeal magnetotransduction therapy with Magnetolith and high-energy focused electromagnetic extracorporeal shockwave therapy as bone stimulation therapy for scaphoid nonunion – A case report. Med Case Rep Study Protoc 2020;2:1.
10. Knobloch K. Extracorporeal magnetotransduction therapy (EMTT) and high-energetic focused extracorporeal shockwave therapy (ESWT) as bone stimulation therapy for metacarpal non-union – A case report. Handchir Mikrochir Plast Chir 2021;53:82-6.
11. Knobloch K. Bone stimulation 4.0 – Combination of EMTT & EMTT in humerus nonunion. Unfallchirurg 2022;125:323-6.
12. Klüter T, Krath A, Stukenberg M, Gollwitzer H, Harrasser N, Knobloch K, et al. Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial. Electromagn Biol Med 2018;37:175-83.
13. Kopf S, Beaufils P, Hirschmann MT, Rotigliano N, Ollivier M, Pereira H, et al. Management of traumatic meniscus tears: The 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 2020;28:1177-94.
14. Krath A, Klüter T, Stukenberg M, Zielhardt P, Gollwitzer H, Harrasser N, et al. Electromagnetic transduction therapy in non-specific low back pain: A prospective randomised controlled trial. J Orthop 2017;14:410-5.
15. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. Am J Sports Med 2007;35:1756-69.
16. Moretti B, Notarnicola A, Garofalo R, Moretti L, Patella S, Marlinghaus E, et al. Shock waves in the treatment of stress fractures. Ultrasound Med Biol 2009;35:1042-9.
17. Ouyang J, Zhang B, Kuang L, Yang P, Du X, Qi H, et al. Pulsed electromagnetic field inhibits synovitis via enhancing the efferocytosis of macrophages. Biomed Res Int 2020;2020:4307385.
18. Pölzl L, Nägele F, Hirsch J, Graber M, Grimm M, Gollmann-Tepeköylü C, et al. Exosome isolation after in vitro shock wave therapy. J Vis Exp 2020;(163). doi: 10.3791/61508.
19. Riley DS, Barber MS, Kienle GS, Aronson JK, von Schoen-Angerer T, Tugwell P, et al. CARE guidelines for case reports: Explanation and elaboration document. J Clin Epidemiol 2017;89:218-35.
20. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT) – First choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
21. Kim SH, Lee HJ, Jang YH, Chun KJ, Park YB. Diagnostic accuracy of magnetic resonance imaging in the detection of type and location of meniscus tears: Comparison with arthroscopic findings. J Clin Med 2021;10:606.
22. Tang X, Coughlin D, Ballatori A, Berg-Johansen B, Waldorff EI, Zhang N, et al. Pulsed electromagnetic fields reduce interleukin-6 expression in intervertebral disc cells via nuclear factor-κβ and mitogen-activated protein kinase p38 pathways. Spine (Phila Pa 1976) 2019;44:E1290-7.
23. Wesdorp MA, Eijgenraam SM, Meuffels DE, Bierma-Zeinstra SM, Kleinrensink GJ, Bastiaansen-Jenniskens YM, et al. Traumatic meniscal tears are associated with meniscal degeneration. Am J Sports Med 2020;48:2345-52.
24. Willems A, van der Jagt OP, Meuffels DE. Extracorporeal shock wave treatment for delayed union and nonunion fractures: Asystematic review. J Orthop Trauma 2019;33:97-103.
25. Zhao Z, Wang Y, Wang Q, Liang J, Hu W, Zhao S, et al. Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo. Stem Cell Res Ther 2021;12:19.

 


How to Cite this article: Knobloch K | Novel Extracorporeal Magnetotransduction Therapy with Magnetolith® and Focused Electromagnetic Extracorporeal Shockwave Therapy in Medial Meniscal Tear – A Case Report | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 32-35.

[Full Text HTML] [Full Text PDF] [XML]


Extracorporeal Shockwave Treatment for Managing Biofilm-mediated Infections in Dentistry: Current Knowledge and Future Perspectives

Review Article | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 22-26 | Antonia Olivares, Christina M A P Schuh, Sebastian Aguayo

DOI: 10.13107/jrs.2022.v02.i01.39

Author: Antonia Olivares [1], Christina M A P Schuh [2], Sebastian Aguayo [1,3]

[1] School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.

[2] Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.

[3] Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.

Address of Correspondence
Dr. Sebastian Aguayo,
School of Dentistry and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
E-mail: sebastian.aguayo@uc.cl


Abstract

At present, chronic non-communicable diseases are becoming more prevalent across the world. Among these pathologies, oral diseases such as dental caries and periodontitis are some of the most frequently observed in populations worldwide. These biofilm-mediated infections are produced as a consequence of a series of factors that modify the oral microenvironment and lead to dysbiosis among residing biofilms, which are particularly difficult to treat with pharmacological approaches due to their structural and anatomical characteristics. Furthermore, the recent sharp increase in antimicrobial resistance has potentiated the need for the development of novel techniques to effectively treat biofilm-mediated diseases in the mouth. One option that has recently shown promising results in vitro is the use of focused high-energy extracorporeal shockwave therapy (fhESWT) for the control of microbial growth and biofilm formation. Several studies have shown the effect of fhESWT on the treatment of biofilm-mediated infections associated with bone fractures and orthopedic implant infection, although the mechanisms behind this effect are still unknown. Regarding the oral cavity, there remains a lack of clinical studies but there are some limited in vitro and in vivo investigations that shed light on the potential of fhESWT for biofilm control. Therefore, the objective of this review is to discuss the most relevant available literature regarding the in vitro and in vivo effects of fhESWT over biofilm control, as well as the potential use of fhESWT for the treatment of oral biofilm-mediated diseases in the future.

Keywords: Bacteria, Biofilms, Extracorporeal shockwave therapy, Focused high-energy extracorporeal shockwave therapy, Fungi, Microorganisms.


References:

1. Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol 2019;23:122-8.
2. Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: Aneed to act. J Intern Med 2014;276:98-110.
3. Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, et al. Oral biofilm architecture on natural teeth. PLoS One 2010;5:e9321.
4. Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. J Dent Res 2009;88:982-90.
5. Aguayo S, Donos N, Spratt D, Bozec L. Nanoadhesion of Staphylococcus aureus onto titanium implant surfaces. J Dent Res 2015;94:1078-84.
6. Schmidlin PR, Müller P, Attin T, Wieland M, Hofer D, Guggenheim B. Polyspecies biofilm formation on implant surfaces with different surface characteristics. J Appl Oral Sc 2013;21:48-55.
7. Simon-Soro A, Ren Z, Krom BP, Hoogenkamp MA, Cabello-Yeves PJ, Daniel SG, et al. Polymicrobial aggregates in human saliva build the oralbiofilm. mBio 2022;13:e0013122.
8. Aguayo S, Bozec L. Mechanics of bacterial cells and initial surface colonisation. In: Leake MC, editor. Biophysics of Infection. Cham: Springer. International Publishing; 2016. p. 245-60.
9. Avilés-Reyes A, Miller JH, Lemos JA, Abranches J. Collagen-binding proteins of Streptococcus mutans and related streptococci. Mol Oral Microbiol 2017;32:89-106.
10. Álvarez S, Leiva-Sabadini C, Schuh CM, Aguayo S. Bacterial adhesion to collagens: Implications for biofilm formation and disease progression in the oral cavity. Crit Rev Microbiol 2021;48:1-13.
11. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015;7:493-512.
12. Souza JG, Costa RC, Sampaio AA, Abdo VL, Nagay BE, Castro N, et al. Cross-kingdom microbial interactions in dental implant-related infections: Is Candida albicans a new villain? iScience 2022;25:103994.
13. Wan SX, Tian J, Liu Y, Dhall A, Koo H, Hwang G. Cross-kingdom cell-to-cell interactions in cariogenic biofilm initiation. J Dent Res 2021;100:74-81.
14. Digel I, Kern I, Geenen EM, Akimbekov N. Dental plaque removal by ultrasonic toothbrushes. Dent J (Basel) 2020;8:28.
15. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio 2018;9:e02331-17.
16. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Prim 2017;3:17030.
17. Singhrao SK, Harding A, Poole S, Kesavalu L, Crean SJ. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm 2015;2015:137357.
18. Sousa V, Nibali L, Spratt D, Dopico J, Mardas N, Petrie A, et al. Peri-implant and periodontal microbiome diversity in aggressive periodontitis patients: Apilot study. Clin Oral Implants Res 2017;28:558-70.
19. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012;10:717-25.
20. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018;392:1789-858.
21. Jin LJ, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis 2016;22:609-19.
22. Kazeminia M, Abdi A, Shohaimi S, Jalali R, Vaisi-Raygani A, Salari N, et al. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: A systematic review and meta-analysis. Head Face Med 2020;16:22.
23. Petersen PE, Ogawa H. The global burden of periodontal disease: Towards integration with chronic disease prevention and control. Periodontol 2000 2012;60:15-39.
24. Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol 2020;120:45-84.
25. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis a review. Head Face Med 2014;10:34.
26. Millsop JW, Fazel N. Oral candidiasis. Clin Dermatol 2016;34:487-94.

27. Aguayo S, Marshall H, Pratten J, Bradshaw D, Brown JS, Porter SR, et al. Early adhesion of Candida albicans onto dental acrylic surfaces. J Dent Res 2017;96:917-23.
28. Grigalauskienė R, Slabšinskienė E, Vasiliauskienė I. Biological approach of dental caries management. Stomatologija 2015;17:107-12.
29. Jirau-Colón H, González-Parrilla L, Martinez-Jiménez J, Adam W, Jiménez-Velez B. Rethinking the dental amalgam dilemma: An integrated toxicological approach. Int J Environ Res Public Health 2019;16:1036.
30. Fischer RG, Lira R Jr., Retamal-Valdes B, de Figueiredo LC, Malheiros Z, Stewart B, et al. Periodontal disease and its impact on general health in Latin America. Section V: Treatment of periodontitis. Braz Oral Res 2020;34:e026.
31. Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. Sci Rep 2020;10:5254.
32. Kuang X, Chen V, Xu X. Novel approaches to the control of oral microbial biofilms. Biomed Res Int 2018;2018:6498932.
33. Leiva-Sabadini, C, Alvarez, S, Barrera NP, Schuh CM, Aguayo S. Antibacterial effect of honey-derived exosomes containing antimicrobial peptides against oral streptococci. Int J Nanomed 2021;16:4891-900.
34. Ogden JA, Tóth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res 2001;387:8-17.
35. Mirea A, Onose G, Padure L, Rosulescu E. Extracorporeal shockwave therapy (ESWT) benefits in spastic children with cerebral palsy (CP). J Med Life 2014;7:127-32.
36. Chaussy CG. The history of shockwave lithotripsy. In: Patel SR, Moran ME, Nakada SY, editors. The History of Technologic Advancements in Urology. Cham: Springer International Publishing; 2018. p. 109-21.
37. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma 2010;24:133-41.
38. Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 2001;387:90-4.
39. Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 2011;253:1024-32.
40. Wang CJ, Cheng JH, Kuo YR, Schaden W, Mittermayr R. Extracorporeal shockwave therapy in diabetic foot ulcers. Int J Surg 2015;24:207-9.
41. Puetzler J, Milstrey A, Everding J, Raschke M, Arens D, Zeiter S, et al. Focused high-energy extracorporeal shockwaves as supplemental treatment in a rabbit model of fracture-related infection. J Orthop Res 2020;38:1351-8.
42. Qi X, Zhao Y, Zhang J, Han D, Chen C, Huang Y, et al. Increased effects of extracorporeal shock waves combined with gentamicin against Staphylococcus aureus biofilms in vitro and in vivo. Ultrasound Med Biol 2016;42:2245-52.
43. Milstrey A, Rosslenbroich S, Everding J, Raschke MJ, Richards RG, Moriarty TF, et al. Antibiofilm efficacy of focused high-energy extracorporeal shockwaves and antibiotics in vitro. Bone Joint Res 2021;10:77-84.
44. Datey A, Thaha CS, Patil SR, Gopalan J, Chakravortty D. Shockwave therapy efficiently cures multispecies chronic periodontitis in a humanized rat model. Front Bioeng Biotechnol 2019;7:382.

 


How to Cite this article: Olivares A, Schuh CMAP, Aguayo S | Extracorporeal Shockwave Treatment for Managing Biofilm-mediated Infections in Dentistry: The Current Knowledge and Future Perspectives | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 22-26.

[Full Text HTML] [Full Text PDF] [XML]


Very Low and Low-energetic Extracorporeal Shock Wave Treatment of Spasticity in Children and Adults – A Systematic Review

Systematic Review | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 03-08 | Karsten Knobloch, Henning Lohse-Busch, Andreas Gohritz, Tomas Nedelka

DOI: 10.13107/jrs.2022.v02.i01.33

Author: Karsten Knobloch [1], Henning Lohse-Busch [2], Andreas Gohritz [3], Tomas Nedelk [4,5]

[1] Department of Sports Medicine, SportPraxis Prof. Knobloch, Hannover, Germany.

[2] Zentrum für Bewegungsstörungen, Rheintalklinik Bad Krozingen, Germany.

[3] Department of Neurology, Universitätsspital Basel, Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Suisse.

[4] Department of Neurology, Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.

[5] Department of Neurology, Czech Technical University, Faculty of Biomedical Engineering, Kladno, Czech Republic.

Address of Correspondence
Prof. Dr. Karsten Knobloch,
SportPraxis Prof. Knobloch, Heiligerstr. 3, D-30159 Hannover, Germany.
E-mail: professor.knobloch@sportpraxis-knobloch.de


Abstract

Introduction: This systemic review aims to assess the modes and treatment parameters of radial and focused extracorporeal shockwave therapy (ESWT) in spasticity based on the technologies and energy levels involved.
Materials and Methods: 1086 patients from 31 randomized-controlled trials (RCT) or cohort studies are included. 300 children were studied in seven studies (3 RCTs) with two radial and four focused electromagnetic ESWT devices and 14 studies with 443 patients using focused ESWT (electrohydraulic 46 patients, electromagnetic 367 patients, and piezoelectric 30 patients).
Results: In electromagnetic focused ESWT 8 RCTs (n = 323 patients) and three cohort studies (n = 44) used either very low-energetic (0.03–0.05 mJ/mm2) with 1500–2000 shots and 4–5 Hz with 3–5 focused sessions, or low-energetic 0.07–0.12 mJ/mm2 with 1500–2000 shots with 4–5 Hz and 1–3 sessions. The 64 children in the five electromagnetic focused trials were treated with very low-energetic 0.03 mJ/mm2, 1500 shots, and three sessions. 17 studies (n = 687) were using radial technologies with 7 RCTs (n = 349) and ten cohort studies (n = 338). Among the 17 trials, four studies (1 RCT, 3 cohort studies) included 236 children treated with either very low-energetic 0.6–1 bar (two trials) or low-energetic 1.5–3 bar with 5–10 Hz. Energy-wise three radial studies were very low-energetic 0.6–1 bar and 14 studies applied low-energetic radial pressures 1.5–3 bar. Notably, the frequency was mainly 4–8 Hz in the radial studies.
Conclusion: Both, radial and focused very low- to low-energetic ESWT improve function and reduce spasticity significantly. Adverse effects were not noted with the applied very low- to low-energetic device parameters neither among children nor in adults.

Keywords: Spasticity, Extracorporeal shock wave therapy, Extracorporeal shockwave therapy, Children.


References:

1. Lohse-Busch H, Kraemer M, Reime U. A pilot investigation into the effects of extracorporeal shock waves on muscular dysfunction in children with spastic movement disorders. Schmerz 1997;11:108-12.
2. Lohse-Busch H, Kraemer M, Reime U. The use of extracorporeal shock wave fronts for treatment of muscle dysfunction of various etiologies: An overview of first results. In: Siebert, Buch , editors. Extracorporeal Shock Waves in Orthopaedics. New York, Tokyo: Springer Verlag Berlin Heidelberg; 1998. p. 215-30.
3. Riedel M, Falland R, Sailer-Kramer B, Lohse-Busch H. Komplexbehandlung mit manueller medizin und physiotherapie bei zerebral bewegungsgestörten kindern. Man Med Osteopath Med 2001;39:72-8.
4. Lohse-Busch H. Extrakorporale Stoßwellen. In: Lohse-Busch H, Riedel M, Graf Baumann T, editors. Das Therapeutische Angebot Für Bewegungsgestörte Kinder. New York: Springer Verlag Berlin Heidelberg; 2000. p. 257-74.
5. Oh JH, Park HD, Han SH, Shim GY, Choi KY. Duration of treatment effect of extracorporeal shock wave on spasticity and subgroup-analysis according to number of shocks and application site: A meta-analysis. Ann Rehabil Med 2019;43:163-77.
6. Lee JY, Kim SN, Lee IS, Jung H, Lee KS, Koh SE. Effects of extracorporeal shock wave therapy on spasticity in patients after brain injury: Ameta-analysis. J Phys Ther Sci 2014;26:1641-7.
7. Cabanas-Valdés R, Calvo-Sanz J, Urrùtia G, Serra-Llobet P, Pérez-Bellmunt A, Germán-Romero A. The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: A systematic review and meta-analysis. Top Stroke Rehabil 2020;27:137-57.
8. Xiang J, Wang W, Jiang W, Qian Q. Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: Asystematic review and meta-analysis of randomized controlled trials. J Rehabil Med 2018;50:852-9.
9. Dymarek R, Ptaszkowski K, Ptaszkowska L, Kowal M, Sopel M, Taradaj J, et al. Shock waves as a treatment modality for spasticity reduction and recovery improvement in post-stroke adults – Current evidence and qualitative systematic review. Clin Interv Aging 2020;15:9-28.
10. Liu DY, Zhong DL, Li J, Jin RJ. The effectiveness and safety of extracorporeal shock wave therapy (ESWT) on spasticity after upper motor neuron injury: Aprotocol of systematic review and meta-analysis. Medicine (Baltimore) 2020;99:e18932.
11. Corrado B, Di Luise C, Servodio Iammarrone C. Management of muscle spasticity in children with cerebral palsy by means of extracorporeal shockwave therapy: A systematic review of the literature. Dev Neurorehabil 2021;24:1-7.
12. Park DS, Kwon DR, Park GY, Lee MY. Therapeutic effect of extracorporeal shock wave therapy according to treatment session on gastrocnemius muscle spasticity in children with spastic cerebral palsy: A pilot study. Ann Rehabil Med 2015;39:914-21.
13. El-Shamy SM, Eid MA, El-Banna MF. Effect of extracorporeal shock wave therapy on gait pattern in hemiplegic cerebral palsy: A randomized controlled trial. Am J Phys Med Rehabil 2014;93:1065-72.

14. Picelli A, La Marchina E, Gajofatto F, Pontillo A, Vangelista A, Filippini R, et al. Sonographic and clinical effects of botulinum toxin Type A combined with extracorporeal shock wave therapy on spastic muscles of children with cerebral palsy. Dev Neurorehabil 2017;20:160-4.
15. Amelio E, Manganotti P. Effect of shock wave stimulation on hypertonic plantar flexor muscles in patients with cerebral palsy: A placebo-controlled study. J Rehabil Med 2010;42:339-43.
16. Lin Y, Wang G, Wang B. Rehabilitation treatment of spastic cerebral palsy with radial extracorporeal shock wave therapy and rehabilitation therapy. Medicine (Baltimore) 2018;97:e13828.
17. Wang T, Du L, Shan L, Dong H, Feng J, Kiessling MC, et al. A prospective case-control study of radial extracorporeal shock wave therapy for spastic plantar flexor muscles in very young children with cerebral palsy. Medicine (Baltimore) 2016;95:e3649.
18. Mirea A, Onose G, Padure L, Rosulescu E. Extracorporeal shockwave therapy (ESWT) benefits in spastic children with cerebral palsy (CP). J Med Life 2014;7:127-32.
19. Gonkova MI, Ilieva EM, Ferriero G, Chavdarov I. Effect of radial shock wave therapy on muscle spasticity in children with cerebral palsy. Int J Rehabil Res 2013;36:284-90.
20. Santamato A, Micello MF, Panza F, Fortunato F, Logroscino G, Picelli A, et al. Extracorporeal shock wave therapy for the treatment of poststroke plantar-flexor muscles spasticity: A prospective open-label study. Top Stroke Rehabil 2014;21 Suppl 1:S17-24.
21. Sohn MK, Cho KH, Kim YJ, Hwang SL. Spasticity and electrophysiologic changes after extracorporeal shock wave therapy on gastrocnemius. Ann Rehabil Med 2011;35:599-604.
22. Lee CH, Lee SH, Yoo JI, Lee SU. Ultrasonographic evaluation for the effect of extracorporeal shock wave therapy on gastrocnemius muscle spasticity in patients with chronic stroke. PM R 2019;11:363-71.
23. Wu YT, Yu HK, Chen LR, Chang CN, Chen YM, Hu GC. Extracorporeal shock waves versus botulinum toxin type A in the treatment of poststroke upper limb spasticity: A randomized noninferiority trial. Arch Phys Med Rehabil 2018;99:2143-50.
24. Taheri P, Vahdatpour B, Mellat M, Ashtari F, Akbari M. Effect of extracorporeal shock wave therapy on lower limb spasticity in stroke patients. Arch Iran Med 2017;20:338-43.
25. Yoon SH, Shin MK, Choi EJ, Kang HJ. Effective site for the application of extracorporeal shock-wave therapy on spasticity in chronic stroke: Muscle belly or myotendinous junction. Ann Rehabil Med 2017;41:547-55.
26. Santamato A, Notarnicola A, Panza F, Ranieri M, Micello MF, Manganotti P, et al. SBOTE study: Extracorporeal shock wave therapyversus electrical stimulation after botulinum toxin type a injection for post-stroke spasticity – A prospective randomized trial. Ultrasound Med Biol 2013;39:283-91.
27. Manganotti P, Amelio E. Long-term effect of shock wave therapy on upper limb hypertonia in patients affected by stroke. Stroke 2005;36:1967-71.
28. Troncati F, Paci M, Myftari T, Lombardi B. Extracorporeal Shock Wave Therapy reduces upper limb spasticity and improves motricity in patients with chronic hemiplegia: A case series. NeuroRehabilitation 2013;33:399-405.
29. Moon SW, Kim JH, Jung MJ, Son S, Lee JH, Shin H, et al. The effect of extracorporeal shock wave therapy on lower limb spasticity in subacute stroke patients. Ann Rehabil Med 2013;37:461-70.
30. Radinmehr H, Ansari NN, Naghdi S, Tabatabaei A, Moghimi E. Comparison of therapeutic ultrasound and radial shock wave therapy in the treatment of plantar flexor spasticity after stroke: A prospective, single-blind, randomized clinical trial. J Stroke Cerebrovasc Dis 2019;28:1546-54.
31. Marinelli L, Mori L, Solaro C, Uccelli A, Pelosin E, Currà A, et al. Effect of radial shock wave therapy on pain and muscle hypertonia: A double-blind study in patients with multiple sclerosis. Mult Scler 2015;21:622-9.
32. Vidal X, Morral A, Costa L, Tur M. Radial extracorporeal shock wave therapy (rESWT) in the treatment of spasticity in cerebral palsy: A randomized, placebo-controlled clinical trial. NeuroRehabilitation 2011;29:413-9.
33. Li TY, Chang CY, Chou YC, Chen LC, Chu HY, Chiang SL, et al. Effect of radial shock wave therapy on spasticity of the upper limb in patients with chronic stroke: A prospective, randomized, single blind, controlled trial. Medicine (Baltimore) 2016;95:e3544.
34. Wu YT, Chang CN, Chen YM, Hu GC. Comparison of the effect of focused and radial extracorporeal shock waves on spastic equinus in patients with stroke: A randomized controlled trial. Eur J Phys Rehabil Med 2018;54:518-25.
35. Dymarek R, Taradaj J, Rosińczuk J. The effect of radial extracorporeal shock wave stimulation on upper limb spasticity in chronic stroke patients: A single-blind, randomized, placebo-controlled study. Ultrasound Med Biol 2016;42:1862-75.
36. Megna M, Marvulli R, Farì G, Gallo G, Dicuonzo F, Fiore P, et al. Pain and muscles properties modifications after botulinum toxin type A (BTX-A) and radial extracorporeal shock wave (rESWT) combined treatment. Endocr Metab Immune Disord Drug Targets 2019;19:1127-33.
37. Kim YW, Shin JC, Yoon JG, Kim YK, Lee SC. Usefulness of radial extracorporeal shock wave therapy for the spasticity of the subscapularis in patients with stroke: Apilot study. Chin Med J (Engl) 2013;126:4638-43.
38. Sawan S, Abd-Allah F, Hegazy MM, Farrag MA, El-Den NH. Effect of shock wave therapy on ankle plantar flexors spasticity in stroke patients. NeuroRehabilitation 2017;40:115-8.
39. Radinmehr H, Nakhostin Ansari N, Naghdi S, Olyaei G, Tabatabaei A. Effects of one session radial extracorporeal shockwave therapy on post-stroke plantarflexor spasticity: A single-blind clinical trial. Disabil Rehabil 2017;39:483-90.
40. Kim TG, Bae SH, Kim GY, Kim KY. The effects of extracorporeal shock wave therapy on stroke patients with plantar fasciitis. J Phys Ther Sci 2015;27:523-6.
41. Dymarek R, Taradaj J, Rosińczuk J. Extracorporeal shock wave stimulation as alternative treatment modality for wrist and fingers spasticity in poststroke patients: A prospective, open-label, preliminary clinical trial. Evid Based Complement Alternat Med 2016;2016:4648101.
42. Daliri SS, Forogh B, Emami Razavi SZ, Ahadi T, Madjlesi F, Ansari NN. A single blind, clinical trial to investigate the effects of a single session extracorporeal shock wave therapy on wrist flexor spasticity after stroke. NeuroRehabilitation 2015;36:67-72.
43. Amelio E, Manganotti P. Effect of Shock Wave Therapy in Patients Affected by Stroke with Upper Limb Spasticity: Neurophysiologic and Clinical Study. International Federation of Societies for Surgery of the Hand; 2004. p. 535-40.
44. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet 1980;2:1265-8.
45. Louwerens JK, Sierevelt IN, Kramer ET, Boonstra R, van den Bekerom MP, van Royen BJ, et al. Comparing ultrasound-guided needling combined with a subacromial corticosteroid injection versus high-energy extracorporeal shockwave therapy for calcific tendinitis of the rotator cuff: A randomized controlled trial. Arthroscopy 2020;36:1823-33.e1.
46. Wang YC, Chen SJ, Huang PJ, Huang HT, Cheng YM, Shih CL. Efficacy of different energy levels used in focused and radial extracorporeal shockwave therapy in the treatment of plantar fasciitis: A meta-analysis of randomized placebo-controlled trials. J Clin Med 2019;8:1497.

 


How to Cite this article: Knobloch K, Lohse-Busch H, Gohritz A, Nedelka T | Very Low and Low-energetic Extracorporeal Shock Wave Treatment of Spasticity in Children and Adults–A Systematic Review. | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 03-08.

[Full Text HTML] [Full Text PDF] [XML]