Extracorporeal Shockwave Treatment for Managing Biofilm-mediated Infections in Dentistry: Current Knowledge and Future Perspectives

Review Article | Volume 2 | Issue 1 | JRS Jan – Jun 2022 | Page 22-26 | Antonia Olivares, Christina M A P Schuh, Sebastian Aguayo

DOI: 10.13107/jrs.2022.v02.i01.39

Author: Antonia Olivares [1], Christina M A P Schuh [2], Sebastian Aguayo [1,3]

[1] School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.

[2] Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.

[3] Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.

Address of Correspondence
Dr. Sebastian Aguayo,
School of Dentistry and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.


At present, chronic non-communicable diseases are becoming more prevalent across the world. Among these pathologies, oral diseases such as dental caries and periodontitis are some of the most frequently observed in populations worldwide. These biofilm-mediated infections are produced as a consequence of a series of factors that modify the oral microenvironment and lead to dysbiosis among residing biofilms, which are particularly difficult to treat with pharmacological approaches due to their structural and anatomical characteristics. Furthermore, the recent sharp increase in antimicrobial resistance has potentiated the need for the development of novel techniques to effectively treat biofilm-mediated diseases in the mouth. One option that has recently shown promising results in vitro is the use of focused high-energy extracorporeal shockwave therapy (fhESWT) for the control of microbial growth and biofilm formation. Several studies have shown the effect of fhESWT on the treatment of biofilm-mediated infections associated with bone fractures and orthopedic implant infection, although the mechanisms behind this effect are still unknown. Regarding the oral cavity, there remains a lack of clinical studies but there are some limited in vitro and in vivo investigations that shed light on the potential of fhESWT for biofilm control. Therefore, the objective of this review is to discuss the most relevant available literature regarding the in vitro and in vivo effects of fhESWT over biofilm control, as well as the potential use of fhESWT for the treatment of oral biofilm-mediated diseases in the future.

Keywords: Bacteria, Biofilms, Extracorporeal shockwave therapy, Focused high-energy extracorporeal shockwave therapy, Fungi, Microorganisms.


1. Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol 2019;23:122-8.
2. Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: Aneed to act. J Intern Med 2014;276:98-110.
3. Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, et al. Oral biofilm architecture on natural teeth. PLoS One 2010;5:e9321.
4. Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. J Dent Res 2009;88:982-90.
5. Aguayo S, Donos N, Spratt D, Bozec L. Nanoadhesion of Staphylococcus aureus onto titanium implant surfaces. J Dent Res 2015;94:1078-84.
6. Schmidlin PR, Müller P, Attin T, Wieland M, Hofer D, Guggenheim B. Polyspecies biofilm formation on implant surfaces with different surface characteristics. J Appl Oral Sc 2013;21:48-55.
7. Simon-Soro A, Ren Z, Krom BP, Hoogenkamp MA, Cabello-Yeves PJ, Daniel SG, et al. Polymicrobial aggregates in human saliva build the oralbiofilm. mBio 2022;13:e0013122.
8. Aguayo S, Bozec L. Mechanics of bacterial cells and initial surface colonisation. In: Leake MC, editor. Biophysics of Infection. Cham: Springer. International Publishing; 2016. p. 245-60.
9. Avilés-Reyes A, Miller JH, Lemos JA, Abranches J. Collagen-binding proteins of Streptococcus mutans and related streptococci. Mol Oral Microbiol 2017;32:89-106.
10. Álvarez S, Leiva-Sabadini C, Schuh CM, Aguayo S. Bacterial adhesion to collagens: Implications for biofilm formation and disease progression in the oral cavity. Crit Rev Microbiol 2021;48:1-13.
11. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015;7:493-512.
12. Souza JG, Costa RC, Sampaio AA, Abdo VL, Nagay BE, Castro N, et al. Cross-kingdom microbial interactions in dental implant-related infections: Is Candida albicans a new villain? iScience 2022;25:103994.
13. Wan SX, Tian J, Liu Y, Dhall A, Koo H, Hwang G. Cross-kingdom cell-to-cell interactions in cariogenic biofilm initiation. J Dent Res 2021;100:74-81.
14. Digel I, Kern I, Geenen EM, Akimbekov N. Dental plaque removal by ultrasonic toothbrushes. Dent J (Basel) 2020;8:28.
15. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio 2018;9:e02331-17.
16. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Prim 2017;3:17030.
17. Singhrao SK, Harding A, Poole S, Kesavalu L, Crean SJ. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm 2015;2015:137357.
18. Sousa V, Nibali L, Spratt D, Dopico J, Mardas N, Petrie A, et al. Peri-implant and periodontal microbiome diversity in aggressive periodontitis patients: Apilot study. Clin Oral Implants Res 2017;28:558-70.
19. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012;10:717-25.
20. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018;392:1789-858.
21. Jin LJ, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis 2016;22:609-19.
22. Kazeminia M, Abdi A, Shohaimi S, Jalali R, Vaisi-Raygani A, Salari N, et al. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: A systematic review and meta-analysis. Head Face Med 2020;16:22.
23. Petersen PE, Ogawa H. The global burden of periodontal disease: Towards integration with chronic disease prevention and control. Periodontol 2000 2012;60:15-39.
24. Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol 2020;120:45-84.
25. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis a review. Head Face Med 2014;10:34.
26. Millsop JW, Fazel N. Oral candidiasis. Clin Dermatol 2016;34:487-94.

27. Aguayo S, Marshall H, Pratten J, Bradshaw D, Brown JS, Porter SR, et al. Early adhesion of Candida albicans onto dental acrylic surfaces. J Dent Res 2017;96:917-23.
28. Grigalauskienė R, Slabšinskienė E, Vasiliauskienė I. Biological approach of dental caries management. Stomatologija 2015;17:107-12.
29. Jirau-Colón H, González-Parrilla L, Martinez-Jiménez J, Adam W, Jiménez-Velez B. Rethinking the dental amalgam dilemma: An integrated toxicological approach. Int J Environ Res Public Health 2019;16:1036.
30. Fischer RG, Lira R Jr., Retamal-Valdes B, de Figueiredo LC, Malheiros Z, Stewart B, et al. Periodontal disease and its impact on general health in Latin America. Section V: Treatment of periodontitis. Braz Oral Res 2020;34:e026.
31. Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. Sci Rep 2020;10:5254.
32. Kuang X, Chen V, Xu X. Novel approaches to the control of oral microbial biofilms. Biomed Res Int 2018;2018:6498932.
33. Leiva-Sabadini, C, Alvarez, S, Barrera NP, Schuh CM, Aguayo S. Antibacterial effect of honey-derived exosomes containing antimicrobial peptides against oral streptococci. Int J Nanomed 2021;16:4891-900.
34. Ogden JA, Tóth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res 2001;387:8-17.
35. Mirea A, Onose G, Padure L, Rosulescu E. Extracorporeal shockwave therapy (ESWT) benefits in spastic children with cerebral palsy (CP). J Med Life 2014;7:127-32.
36. Chaussy CG. The history of shockwave lithotripsy. In: Patel SR, Moran ME, Nakada SY, editors. The History of Technologic Advancements in Urology. Cham: Springer International Publishing; 2018. p. 109-21.
37. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma 2010;24:133-41.
38. Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 2001;387:90-4.
39. Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 2011;253:1024-32.
40. Wang CJ, Cheng JH, Kuo YR, Schaden W, Mittermayr R. Extracorporeal shockwave therapy in diabetic foot ulcers. Int J Surg 2015;24:207-9.
41. Puetzler J, Milstrey A, Everding J, Raschke M, Arens D, Zeiter S, et al. Focused high-energy extracorporeal shockwaves as supplemental treatment in a rabbit model of fracture-related infection. J Orthop Res 2020;38:1351-8.
42. Qi X, Zhao Y, Zhang J, Han D, Chen C, Huang Y, et al. Increased effects of extracorporeal shock waves combined with gentamicin against Staphylococcus aureus biofilms in vitro and in vivo. Ultrasound Med Biol 2016;42:2245-52.
43. Milstrey A, Rosslenbroich S, Everding J, Raschke MJ, Richards RG, Moriarty TF, et al. Antibiofilm efficacy of focused high-energy extracorporeal shockwaves and antibiotics in vitro. Bone Joint Res 2021;10:77-84.
44. Datey A, Thaha CS, Patil SR, Gopalan J, Chakravortty D. Shockwave therapy efficiently cures multispecies chronic periodontitis in a humanized rat model. Front Bioeng Biotechnol 2019;7:382.


How to Cite this article: Olivares A, Schuh CMAP, Aguayo S | Extracorporeal Shockwave Treatment for Managing Biofilm-mediated Infections in Dentistry: The Current Knowledge and Future Perspectives | Journal of Regenerative Science | Jan – Jun 2022; 2(1): 22-26.

[Full Text HTML] [Full Text PDF] [XML]