The power of case reports

Editorial | Vol 4 | Issue 1 |  January-June 2024 | page: 01-02 | Daniel Moya

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.117


Author: Daniel Moya [1]

[1] Department of Orthopaedics. Buenos Aires British Hospital, Argentina.


Address of Correspondence
Dr. Daniel Moya,
Department of Orthopaedics. Buenos Aires British Hospital, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Editorial:

Medical education has currently a variety of tools as never before in the history of mankind. Options include everything from telepresence to virtual reality. However, interaction with patients remains, as in the past, an unsurpassed source of learning. Health-care practice provides learning about the way different pathologies manifest, their clinical course, and the response to different treatments.

A simple way to share that experience is through case reporting. A case report consists of a detailed description of significant clinical information of a case or a small group of patients, presenting pathologies not previously described, new therapeutic methodologies, or cases with an unusual response to treatment.

This type of study has often been underestimated because it is a category of publication with a low level of evidence [1-4] and does not have a high citation rate [1, 2, 4, 5]. These causes have led to case reports being a small segment of health publications [4].

However, these studies can provide important information [1-9]. Case reports can be the basis of future large-scale clinical studies [6], can reveal facts that often go unnoticed in large series of patients [3], and be the starting point for the development of new treatments [3]. They can demonstrate results in one or a few cases with therapeutic methods previously tested in animal experiments [4].

Case reports have made it possible to detect severe adverse effects [3, 4]. Nayak described that the teratogenic effect of thalidomide was identified through a case report of phocomelia [3].

We must also be aware that the publication of a case report is often the first step of a young colleague in the world of publications. That is why it should be encouraged. The publication of case reports allows even those who have less economic or institutional support for their academic activity to transmit their experience. It is a way to democratize scientific exchange and not depend only on supposed elites that end up transforming clinical research production groups into small aristocracies that generate only a one-way exchange.

Writing a case report has been described not only as an academic procedure but also as an art [8].

There is useful information in the literature about how to write this type of manuscripts [3, 4, 6, 8, 10]. Cases must be original and transmit information that has an impact on clinical practice. They must be structured like the rest of the publications, provide a complete and correct description of the case, and have solid bibliographic support.

Starting in this volume we will include case reports. On this occasion, they come from different colleagues from Ibero America. We also incorporated a new section that consists of critical reading of scientific publications related to regenerative medicine. Contributions, proposals, and criticisms will be welcome.


References

  1. Shyam A, Shetty G. Resurrection of the case report! J Orthop Case Rep 2011;1:1-2.
  2. Shyam A, Editor-Journal of Orthopaedic Case Reports. Case reports and case series: Expanding the scope of journal of orthopaedic case reports. J Orthop Case Rep 2016;6:1-2.
  3. Nayak BK. The significance of case reports in biomedical publication. Indian J Ophthalmol 2010;58:363-4.
  4. Pierson DJ. How to read a case report (or teaching case of the month). Respir Care 2009;54:1372-8.
  5. Hess DR. What is evidence-based medicine and why should I care? Respir Care 2004;49:730-41.
  6. Târcoveanu E, Roca M, Mihăescu T. Scrierea şi publicarea unei prezentări de caz clinic [Writing and publication of a clinical case report]. Chirurgia (Bucur) 2011;106:581-4.
  7. Guimarães CA. Evidence based case report. Rev Col Bras Cir 2015;42:280.
  8. Ortega-Loubon C, Culquichicón C, Correa R. The importance of writing and publishing case reports during medical training. Cureus 2017;9:e1964.
  9. Rison RA, Kidd MR, Koch CA. The care (case report) guidelines and the standardization of case reports. J Med Case Rep 2013;7:261.
  10. Cohen H. How to write a patient case report. Am J Health Syst Pharm 2006;63:1888-92.

How to Cite this article: Moya D | The Power of Case Reports. | Journal of Regenerative Science | Jan-Jun 2024; 4(1): 01-02.


  (Abstract    Full Text HTML)   (Download PDF)


Extracorporeal Shock Wave Therapy in Calcifying Tendonitis of the Shoulder. Case Report

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 03-05 | Oyama Arruda Frei Caneca Júnior

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.119

 

Author: Oyama Arruda Frei Caneca Júnior [1]

[1] GOT – Orthopedics and Traumatology Group, Recife, Brazil.

Address of Correspondence
Oyama Arruda Frei Caneca Júnior,

GOT – Orthopedics and Traumatology Group, Recife, Brazil.

E-mail: oyama.arruda@gmail.com


Abstract

Calcific tendonitis in the shoulder is very common. Patients who do not improve with physical therapy treatment may benefit from shockwave treatment before an invasive procedure is indicated. The focused shockwave treatment has a high degree of recommendation in calcific tendonitis of the shoulder, according to several studies with a high level of evidence. This report shows a 58-year-old female patient with calcific tendonitis of the shoulder with pain for more than 6 months without response to medication and rehabilitation treatment. Four sessions of 3000 pulses were performed with a focused shockwave piezoelectric device, with a maximum level of energy of 0.4 mj/mm2. Pain remission and calcification resorption were verified 3 months after the last application. Extracorporeal Shockwave Treatment is a safe and effective alternative for calcific tendonitis of the shoulder.
Keywords: ESWT, calcific tendinopathy, shoulder


References:

1. Chianca V, Albano D, Messina C, Midiri F, Mauri G, Aliprandi A, et al. Rotator cuff calcific tendinopathy: From diagnosis to treatment. Acta Biomed 2018;89:186-96.
2. Moreira G. Tratado de Dor Musculo Esquelética. 2ª ed. Cap. 18. Dor no Ombro. São Paulo: Ed. Alef; 2022.
3. Bosworth BM. Calcium deposits in the shoulder and subacromial bursitis. J Am Med Assoc 1941;116:2477-82.
4. Kim MS, Kim IW, Lee S, Shin SJ. Diagnosis and treatment of calcific tendinitis of the shoulder. Clin Shoulder Elb 2020;23:210-6.
5. Gärtner J. Tendinosis calcarea: Results of treatment with needling. Z Orthop Ihre Grenzgeb 1993;131:461-9.
6. Tratado de Ondas de Choque. Sociedade Médica Brasileira de Tratamento Por Ondas de Choque. 1st ed., Cap. 7. Tratamento por Ondas de Choque em Patologias do Ombro. Sao Paulo: Ed Alef; 2022. P. 89-98.
7. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
8. Moya D, Ramón S, Guiloff L, Gerdesmeyer L. Current knowledge on evidence-based shockwave treatments for shoulder pathology. Int J Surg 2015;24:171-8.


How to Cite this article: Caneca OAF Jr. Extracorporeal Shock Wave Therapy in Calcifying Tendonitis of the Shoulder. Case Report. Journal of Regenerative Science 2024;January-June;4(1):03-05

[Article Text HTML]       [Full Text PDF] 


Focused Shock Waves in Delayed Union and No-union after Intramedullary Nailing in Lower Limbs

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 06-08 | Josep Pous

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.121

 

Author: Josep Pous [1]

[1] Orthopaedic Surgeon and Medical Director of CEMATEC, Barcelona, España.

Address of Correspondence
Dr. Josep Pous,
Orthopaedic Surgeon and Medical Director of CEMATEC, Barcelona, España.
E-mail: jpous@cematec.org


Abstract

Shock waves have changed medical therapy substantially. Accounting for the epidemiology of the treated diseases, this therapeutic tool may equal or even surpass the impact of extracorporeal shock wave lithotripsy. Lower limb fractures after intramedullary nailing generally heal without problems when there are good local conditions and no associated pathologies, but sometimes if the biomechanical or biological variables are not ideal, they can lead to a delay in healing or develop a non-union. Extracorporeal shock waves therapy is a treatment option in delayed union and no-union after intramedullary nailing in lower limbs cases in which there is mechanical stability of the fracture focus, as they can allow healing without the need for new surgeries.
Keywords: Extracorporeal shockwave therapy, Shock waves, Non-union, Delayed union


References:

1. Jensen SS, Jensen NM, Gundtoft PH, Kold S, Zura R, Viberg B. Risk factors for nonunion following surgically managed, traumatic, diaphyseal fractures: A systematic review and meta-analysis. EFORT Open Rev 2022;7:516-25.
2. Zura R, Mehta S, Della Rocca GJ, Steen RG. Biological risk factors for nonunion of bone fracture. JBJS Rev 2016;4:e5.
3. Sadat-Ali M, Al-Omar HK, AlTabash KW, AlOmran AK, AlDakheel DA, AlSayed HN. Genetic influence of fracture nonunion (FNU): A systematic review. Pharmgenomics Pers Med 2023;16:569-75.
4. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
5. Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 2016;151:e162775.
6. Tian R, Zheng F, Zhao W, Zhang Y, Yuan J, Zhang B, et al. Prevalence and influencing factors of nonunion in patients with tibial fracture: Systematic review and meta-analysis. J Orthop Surg Res 2020;15:377.
7. Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res 2001;387:102-11.
8. Tamma R, Dell’Endice S, Notarnicola A, Moretti L, Patella S, Patella V, et al. Extracorporeal shock waves stimulate osteoblast activities. Ultrasound Med Biol 2009;35:2093-100.
9. Hofmann A, Ritz U, Rompe JD, Tresch A, Rommens PM. The effect of shock wave therapy on gene expression in human osteoblasts isolated from hypertrophic fracture non-unions. Shock Waves 2015;25:1:91-102.
10. Suhr F, Delhasse Y, Bungartz G, Schmidt A, Pfannkuche K, Bloch W. Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res 2013;11:951-64.
11. Wang CJ, Huang KE, Sun YC, Yang YJ, Ko JY, Weng LH, et al. VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits. J Surg Res 2011;171:114-9.
12. Li B, Wang R, Huang X, Ou Y, Jia Z, Lin S, et al. Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model. Front Endocrinol (Lausanne) 2021;12:627718.
13. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 1997;158:4-11.
14. Alkhawashki HM. Shock wave therapy of fracture nonunion. Injury 2015;46:2248-52.
15. Willems A, Van der Jagt OP, Meuffels DE. Extracorporeal shock wave treatment for delayed union and nonunion fractures: A systematic review. J Orthop Trauma 2019;33:97-103.
16. Sansone V, Ravier D, Pascale V, Applefield R, Del Fabbro M, Martinelli N. Extracorporeal shockwave therapy in the treatment of nonunion in long bones: A systematic review and meta-analysis. J Clin Med 2022;11:1977.
17. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 2001;387:95-101.
18. Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009;91:2589-97. Erratum in: J Bone Joint Surg Am 2010;92:1241.
19. Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 2010;92:846-54.
20. Notarnicola A, Moretti L, Tafuri S, Gigliotti S, Russo S, Musci L, et al. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol 2010;36:1306-13.
21. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–first choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
22. Haffner N, Antonic V, Smolen D, Slezak P, Schaden W, Mittermayr R, et al. Extracorporeal shockwave therapy (ESWT) ameliorates healing of tibial fracture non-union unresponsive to conventional therapy. Injury 2016;47:1506-13.
23. Sandoval C, Valenzuela A, Rojas C, Brañes M, Guiloff L. Extracorporeal shockwave therapy for atrophic and oligotrophic nonunion of tibia and femur in high energy trauma patients. Case series. Int J Surg 2017;9:36-40.


How to Cite this article: Pous J. Focused Shock Waves in Delayed Union and No-union after Intramedullary Nailing in Lower Limbs. Journal of Regenerative Science 2024;January-June;4(1):06-08

[Article Text HTML]       [Full Text PDF] 


Treatment with Shockwave Therapy in a Patient with Joint Hypermobility and Temporomandibular Dysfunction

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 09-15| Claudio Lopes Simplicio, Angélle Aragonez Essado Jácomo, Guilherme Antonio Moreira de Barros

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.123

Author: Claudio Lopes Simplicio [1], Angélle Aragonez Essado Jácomo [2], Guilherme Antonio Moreira de Barros [3]

[1] Orthopedics – Physiatrist – Antalgic Therapy, RJ Brazil Ortofisio Clinic – Instdor Clinic, Sao Paulo State University (UNESP), Botucatu – SP Brazil,
[2] Physiatrist – Pain Doctor, DF, Brazil.
[3] Antalgic Therapy and Palliative Care, Faculdade de Medicina de Botucatu, UNESP-SP, Brazil.

Address of Correspondence
Dr. Cláudio Simplicio,
Orthopedics – Physiatrist – Antalgic Therapy,RJ Brazil, Ortofisio Clinic – Instdor Clinic, Sao Paulo State University (UNESP), Botucatu – SP Brazil.
E-mail: drsimplicio@terra.com.br


Abstract

The text addresses the relationship between joint hypermobility (JH), Ehlers-Danlos Syndrome (EDS), and temporomandibular dysfunction (TMD) in patients, discussing the complexity, and comorbidities associated with these conditions. A clinical case is presented, along with the treatment, including focused shockwave therapy as a non-invasive therapeutic approach. The effectiveness of shockwave therapy is discussed in relation to pain relief and musculoskeletal system regeneration, based on studies and scientific evidence.
However, despite the potential benefits, further research is still needed to fully understand the effects of these therapies in patients with specific conditions, such as JHjoint hypermobility and ehlers-danlos syndrome (EDS. The safety and efficacy of shockwave therapy are also discussed, emphasizing the importance of following rigorous protocols to avoid complications.
This summary highlights the relevance of shockwave therapy in the treatment of TMD and other musculoskeletal conditions, providing a comprehensive view of therapeutic approaches and clinical considerations involved.
Keywords: Joint Hypermobility, Ehlers-Danlos Syndrome, Temporomandibular Joint Dysfunction Syndrome, Extracorporeal Shockwave Therapy


References:


1. Malek S, Reinhold EJ, Pearce GS. The Beighton Score as a measure of generalised joint hypermobility. Rheumatol Int. 2021 Oct;41(10):1707-1716. doi: 10.1007/s00296-021-04832-4. Epub 2021 Mar 18. PMID: 33738549; PMCID: PMC8390395
2. Martin VT, Neilson D. Joint hypermobility and headache: the glue that binds the two together–part 2. Headache. 2014 Sep;54(8):1403-11. doi: 10.1111/head.12417. Epub 2014 Jun 23. PMID: 24958300.
3. Castori M, Tinkle B, Levy H, Grahame R, Malfait F, Hakim A. A framework for the classification of joint hypermobility and related conditions. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):148-157. doi: 10.1002/ajmg.c.31539. Epub 2017 Feb 1. PMID: 28145606.
4. P. Beighton, L. Solomon, C. L. Soskolne. Articular mobility in an African population. Ann Rheum Dis 1973;32:413.
5. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):8-26. doi: 10.1002/ajmg.c.31552. PMID: 28306229.
6. Castori M, Camerota F, Celletti C, Grammatico P, Padua L. Ehlers-Danlos syndrome hypermobility type and the excess of affected females: possible mechanisms and perspectives. Am J Med Genet A. 2010 Sep;152A(9):2406-8. doi: 10.1002/ajmg.a.33585. PMID: 20684008.
7. Castori M. Ehlers-danlos syndrome, hypermobility type: an underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations. ISRN Dermatol. 2012;2012:751768. doi: 10.5402/2012/751768. Epub 2012 Nov 22. PMID: 23227356; PMCID: PMC3512326.
8. Sanches SH, Osório Fde L, Udina M, Martín-Santos R, Crippa JA. Anxiety and joint hypermobility association: a systematic review. Braz J Psychiatry. 2012 Jun;34 Suppl 1:S53-60. English, Portuguese. doi: 10.1590/s1516-44462012000500005. PMID: 22729449.
9. Bielajew BJ, Donahue RP, Espinosa MG, Arzi B, Wang D, Hatcher DC et al. Knee orthopedics as a template for the temporomandibular joint. Cell Rep Med. 2021 Apr 14;2(5):100241. doi: 10.1016/j.xcrm.2021.100241. PMID: 34095872; PMCID: PMC8149366.
10. Schmitz C, Császár NB, Milz S, Schieker M, Maffulli N, Rompe JD, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull. 2015;116(1):115-38. doi: 10.1093/bmb/ldv047. Epub 2015 Nov 18. PMID: 26585999; PMCID: PMC4674007.
11. Contaldo C, Högger DC, Khorrami Borozadi M, Stotz M, Platz U, Forster N et al. Radial pressure waves mediate apoptosis and functional angiogenesis during wound repair in ApoE deficient mice. Microvasc Res. 2012 Jul;84(1):24-33. doi: 10.1016/j.mvr.2012.03.006. Epub 2012 Mar 29. PMID: 22504489.
12. Simplicio C, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JF. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020;11:S309-18.
13. Rompe JD, Kirkpatrick CJ, Küllmer K, Schwitalle M, Krischek O. Dose-related effects of shock waves on rabbit tendo Achillis. A sonographic and histological study. J Bone Joint Surg Br. 1998 May;80(3):546-52. doi: 10.1302/0301-620x.80b3.8434. PMID: 9619954.
14. Simplício CL, SMBTOC. Tratado de Ondas de Choque. Abu Dhabi: Sociedade Médica Brasileira de Tratamento por Ondas de Choque, Alef; 2022.
15. Gollmann-Tepeköylü C, Pölzl L, Graber M, Hirsch J, Nägele F, Lobenwein D, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovasc Res. 2020 May 1;116(6):1226-1236. doi: 10.1093/cvr/cvz209. PMID: 31410448.
16. Simplicio C, Santos G, Shinzato GT, De Barros GA, Imamura M, Neto AD, et al. Extracorporeal shockwave treatment for low back pain: A descriptive of the literature. Biol Orthop J 2022;4:e96-105. DOI https://doi.org/10.22374/boj.v4iSP1.46
17. Sukubo NG, Tibalt E, Respizzi S, Locati M, d’Agostino MC. Effect of shock waves on macrophages: A possible role in tissue regeneration and remodeling. Int J Surg. 2015 Dec;24(Pt B):124-30. doi: 10.1016/j.ijsu.2015.07.719. Epub 2015 Aug 18. PMID: 26291028.
18. Kapferer-Seebacher I, Lundberg P, Malfait F, Zschocke J. Periodontal manifestations of Ehlers-Danlos syndromes: A systematic review. J Clin Periodontol. 2017 Nov;44(11):1088-1100. doi: 10.1111/jcpe.12807. Epub 2017 Sep 25. PMID: 28836281.
19. Carvalho TG. Síndrome De Ehlers-Danlos. Espondiloartrite e Manifestações Orofaciais-Um Caso Clínico. Porto: Universidade Fernando Pessoa, Faculdade de Ciências da Saúde; 2023. Available in: https://bdigital.ufp.pt/bitstream/10284/12064/1/PPG_33477.pdf
20. Kapferer-Seebacher I, Schnabl D, Zschocke J, Pope FM. Dental Manifestations of Ehlers-Danlos Syndromes: A Systematic Review. Acta Derm Venereol. 2020 Mar 25;100(7):adv00092. doi: 10.2340/00015555-3428. PMID: 32147746; PMCID: PMC9128968.
21. Buryk-Iggers S, Mittal N, Santa Mina D, Adams SC, Englesakis M, Rachinsky M, et al. Exercise and Rehabilitation in People With Ehlers-Danlos Syndrome: A Systematic Review. Arch Rehabil Res Clin Transl. 2022 Mar 4;4(2):100189. doi: 10.1016/j.arrct.2022.100189. PMID: 35756986; PMCID: PMC9214343.
22. Kapferer-Seebacher I, van Dijk FS, Zschocke J. Periodontal Ehlers-Danlos Syndrome. 2021 Jul 29. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK572429/.
23. Kosho T, Mizumoto S, Watanabe T, Yoshizawa T, Miyake N, Yamada S. Recent Advances in the Pathophysiology of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel). 2019 Dec 29;11(1):43. doi: 10.3390/genes11010043. PMID: 31905796; PMCID: PMC7017038.
24. Lepperdinger U, Zschocke J, Kapferer-Seebacher I. Oral manifestations of Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2021 Dec;187(4):520-526. doi: 10.1002/ajmg.c.31941. Epub 2021 Nov 6. PMID: 34741498; PMCID: PMC9298068.
25. Song B, Yeh P, Nguyen D, Ikpeama U, Epstein M, Harrell J. Ehlers-Danlos Syndrome: An Analysis of the Current Treatment Options. Pain Physician. 2020 Jul;23(4):429-438. PMID: 32709178.
26. Yoshizawa T, Kosho T. Mouse Models of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel). 2023 Feb 8;14(2):436. doi: 10.3390/genes14020436. PMID: 36833362; PMCID: PMC9957544.
27. Tian Y, Cui S, Guo Y, Zhao N, Gan Y, Zhou Y, et al. Similarities and differences of estrogen in the regulation of temporomandibular joint osteoarthritis and knee osteoarthritis. Histol Histopathol. 2022 May;37(5):415-422. doi: 10.14670/HH-18-442. Epub 2022 Feb 23. PMID: 35194774.
28. Urits I, Charipova K, Gress K, Schaaf AL, Gupta S, Kiernan HC, et al.. Treatment and management of myofascial pain syndrome. Best Pract Res Clin Anaesthesiol. 2020 Sep;34(3):427-448. doi: 10.1016/j.bpa.2020.08.003. Epub 2020 Aug 8. PMID: 33004157.
29. Ba S, Zhou P, Yu M. Ultrasound is Effective to Treat Temporomandibular Joint Disorder. J Pain Res. 2021 Jun 10;14:1667-1673. doi: 10.2147/JPR.S314342. PMID: 34140803; PMCID: PMC8203600.
30. Sabeti-Aschraf M, Dorotka R, Goll A, Trieb K. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff. Am J Sports Med. 2005 Sep;33(9):1365-8. doi: 10.1177/0363546504273052. Epub 2005 Jul 7. PMID: 16002492.
31. Li W, Wu J. Treatment of Temporomandibular Joint Disorders by Ultrashort Wave and Extracorporeal Shock Wave: A Comparative Study. Med Sci Monit. 2020 Jun 21;26:e923461. doi: 10.12659/MSM.923461. PMID: 32564051; PMCID: PMC7328499.
32. Kim YH, Bang JI, Son HJ, Kim Y, Kim JH, Bae H, et al. Protective effects of extracorporeal shockwave on rat chondrocytes and temporomandibular joint osteoarthritis; preclinical evaluation with in vivo99mTc-HDP SPECT ex vivo micro-CT. Osteoarthritis Cartilage 2019;27:1692-701. DOI: 10.1016/j.joca.2019.07.008
33. Hazan-Molina H, Reznick AZ, Kaufman H, Aizenbud D. Assessment of IL-1β and VEGF concentration in a rat model during orthodontic tooth movement and extracorporeal shock wave therapy. Arch Oral Biol. 2013 Feb;58(2):142-50. doi: 10.1016/j.archoralbio.2012.09.012. Epub 2012 Oct 22. PMID: 23088789.
34. Manafnezhad J, Salahzadeh Z, Salimi M, Ghaderi F, Ghojazadeh M. The effects of shock wave and dry needling on active trigger points of upper trapezius muscle in patients with non-specific neck pain: A randomized clinical trial. J Back Musculoskelet Rehabil. 2019;32(5):811-818. doi: 10.3233/BMR-181289. PMID: 30883334.
35. Zhang X, Yan X, Wang C, Tang T, Chai Y. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy. J Surg Res. 2014 Jan;186(1):484-92. doi: 10.1016/j.jss.2013.08.013. Epub 2013 Sep 3. PMID: 24035231.
36. Al-Moraissi EA, Farea R, Qasem KA, Al-Wadeai MS, Al-Sabahi ME, Al-Iryani GM. Effectiveness of occlusal splint therapy in the management of temporomandibular disorders: network meta-analysis of randomized controlled trials. Int J Oral Maxillofac Surg. 2020 Aug;49(8):1042-1056. doi: 10.1016/j.ijom.2020.01.004. Epub 2020 Jan 22. PMID: 31982236.
37. Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res. 2003 Nov;21(6):984-9. doi: 10.1016/S0736-0266(03)00104-9. PMID: 14554209.
38. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
39. Király, M., Bender, T., & Hodosi, K. (2018). Comparative study of shockwave therapy and low-level laser therapy effects in patients with myofascial pain syndrome of the trapezius. Rheumatology International. doi:10.1007/s00296-018-4134-x 10.1007/s00296-018-4134-x
40. Poenaru D, Sandulescu MI, Cinteza D. Biological effects of extracorporeal shockwave therapy in tendons: A systematic review. Biomed Rep. 2022 Dec 29;18(2):15. doi: 10.3892/br.2022.1597. PMID: 36684664; PMCID: PMC9845689..
41. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Malos resultados y complicaciones en el uso de ondas de choque focales y ondas de presión radial en patología musculoesquelética [Poor results and complications in the use of focused shockwaves and radial pressure waves in musculoskeletal pathology]. Rehabilitacion (Madr). 2022 Jan-Mar;56(1):64-73. Spanish. doi: 10.1016/j.rh.2021.02.007. Epub 2021 Apr 5. PMID: 33832759.
42. Zhang X, Yan X, Wang C, Tang T, Chai Y. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy. J Surg Res. 2014 Jan;186(1):484-92. doi: 10.1016/j.jss.2013.08.013. Epub 2013 Sep 3. PMID: 24035231.
43. Lu CC, Chou SH, Shen PC, Chou PH, Ho ML, Tien YC. Extracorporeal shock wave promotes activation of anterior cruciate ligament remnant cells and their paracrine regulation of bone marrow stromal cells’ proliferation, migration, collagen synthesis, and differentiation. Bone Joint Res. 2020 Aug 11;9(8):458-468. doi: 10.1302/2046-3758.98.BJR-2019-0365.R1. PMID: 32832074; PMCID: PMC7418778.


How to Cite this article:  Simplicio CL, Jácomo AAE, de Barros GAM. Treatment with Shockwave Therapy in a Patient with Joint Hypermobility and Temporomandibular Dysfunction. Journal of Regenerative Science | 2024; January-June;4(1):09-15.

[Article Text HTML]       [Full Text PDF] 


A Diagnostic Mistake, Treated with Shock Waves: Dabska Tumor

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 16-19| Paul Germán Terán Vela, Felipe Sebastián Criollo Palacios, Estefanía Anabel Lozada Tobar, Luis Eduardo Guzmán Freire, Eloísa Abigael Nájera García

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.125

Author: Paul Germán Terán Vela [1], Felipe Sebastián Criollo Palacios [2], Estefanía Anabel Lozada Tobar [1], Luis Eduardo Guzmán Freire [3], Eloísa Abigael Nájera García [2]

 

[1] Orthopaedic Surgeon, Orthopedic Specialties Center, Quito-Ecuador,
[2] NGC Diagnóstica, Orthopedic Oncology, Quito-Ecuador,
[3] Physician, Orthopedic Specialties Center, Quito-Ecuador.

Address of Correspondence
Dr. Paul Germán Terán Vela,
Orthopaedic Surgeon, Orthopedic Specialties Center, Quito-Ecuador.
E-mail: paulteranmd@gmail.com


Abstract

Papillary intralymphatic angioendothelioma (PILA) or Dabska tumor (DT) is a low-grade angiosarcoma. This vascular tumor usually has a higher incidence during childhood and occurs the most in the extremities and trunk. DT is locally aggressive, and no high metastatic potential is reported. We present a case of a 34-year-old female patient, treated with extracorporeal shock wave therapy (ESWT) for a misdiagnosis of left patellar tendinopathy. Due to the persistence and intensification of her symptoms, she is re-evaluated by Orthopedic Specialists. In magnetic resonance imaging studies, a mass was identified in the left external femoral condyle measuring approximately 10 mm with significant diffuse bone edema. Surgical resection was performed, and a PILA was identified by immunohistochemistry. In this case report, the complications of the use of focused ESWT and the histopathological characteristics of DT are discussed.
Keywords: Dabska tumor, Intralymphatic papillary angioendothelioma, Focused shock waves, Complications


References:


1. Schwartz RA, Dabski C, Da M. The da bska tumor: A thirty-year retrospect. Dermatology 2000;201:1-5.
2. Fanburg-Smith JC, Michal M, Partanen TA, Alitalo K, Miettinen M. Papillary intralymphatic angioendothelioma (PILA). A report of twelve cases of a distinctive vascular tumor with phenotypic features of lymphatic vessels. Am J Surg Pathol 1999;23:1004-10.
3. Fletcher CD, Krishnan K, Mertens UF. Pathology and Genetics of Tumours of Soft Tissue and Bone. Switzerland: WHO; 2002.
4. Nakayama T, Nishino M, Takasu K, Hayakawa K, Toguchida J, Tanaka C. Endovascular papillary angioendothelioma (Dabska tumor) of bone. Orthopedics 2004;27:327-8.
5. Bhatia A, Nada R, Kumar Y, Menon P. Dabska tumor (Endovascular papillary angioendothelioma) of testis: A case report with brief review of literature. Diagn Pathol 2006;1:12.
6. Pozo-Kreilinger JJ, Pena-Burgos EM, Ortiz-Cruz EJ, Cordero-García JM, Barrientos Ruiz I, Tapia-Viñe M, Peleteiro-Pensado M, Bernabéu-Taboada D. Primary intraosseous papillary intralymphatic angioendothelioma of the distal femoral epiphysis: a case report with literature review. Skeletal Radiol. 2024 Apr 15. doi: 10.1007/s00256-024-04674-8. Epub ahead of print. PMID: 38619614. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Poor results and complications in the use of focused shockwaves and radial pressure waves in musculoskeletal pathology. Rehabilitacion (Madr) 2022;56:64-73.
7. Wang CJ, Wang FS, Yang K. WANG Biological Mechanisms of ESWT. ISMST Newsletter; 2006. p. 5-11. Available from: http://www.shockwave.cc/e107_images/custom/sw-bioogical_mechanism_of_eswt.pdf [Last accessed on 2024 May 19].
8. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg 2018;100:251-63.
9. ISMST-International Society for Medical Shockwave Treatment ESWT Guidelines. Available from: https://www.ismst.com. Last accessed April 2024.


 

How to Cite this article: Vela PGT, Palacios FSC, Tobar EAL, Freire LEG, García EAN. A Diagnostic Mistake, Treated with Shock Waves: Dabska Tumor. Journal of Regenerative Science 2024;January-June;4(1):16-19.

[Article Text HTML]       [Full Text PDF] 


Regeneration of the Patellar Tendon with Radial Pressure Waves in a Sharp Injury: A Case Report

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 20-23 | A A Flores Salinas, G C Reyes Cordero, L B García Rodriguez, L C Villa Olivares

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.127

Author: A A Flores Salinas [1], G C Reyes Cordero [2], L B García Rodriguez [3], L C Villa Olivares [4]

[1] Department of Rehabilitation Medicine, Medical Director of Physis Clinics, Chihuahua, Mexico,
[2] Department of Rheumatology, Hospital Ángeles, Chihuahua, Mexico,
[3] Department of Orthopedics and Traumatology, Hospital Central Universitario, Chihuahua, Mexico,
[4] Department of Radiology, Civil Pensions of the State of Chihuahua, Mexico.

Address of Correspondence
Dr. A A Flores Salinas,
Department of Rehabilitation Medicine, Medical Director of Physis Clinics, Chihuahua, Mexico.
Email- drazaelflores@hotmail.com


Abstract

Patellar tendon ruptures are rare injuries and are more commonly associated with predisposing factors and previous surgical procedures than with direct trauma. Acute partial-thickness tears are usually treated with immobilization and rehabilitation. The literature recommends surgical management of partial ruptures of the patellar tendon after 6 months of failure of conservative treatments and in acute cases with a compromise >50–55% of the tendon. Radial pressure wave therapy is a safe, non-invasive technique with scientific support in tissue regeneration; it is found as one of the therapeutic alternatives for the management of tendinopathy and partial ruptures of the patellar tendon. The present case report shows the effectiveness of radial pressure wave therapy in a shear injury of the patellar tendon, with a compromise of at least 70%. We have not found similar cases previously reported in the literature, highlighting its relevance.
Keywords: Patellar tendon, Radial pressure waves, Patellar tendon rupture, Cutting injury


References:

1. Matava MJ. Patellar tendon ruptures. J Am Acad Orthop Surg 1996;4:287-96.
2. Pires R, Prado J, Hara R, Ferreira E, Schiavo L, Giordano V, et al. Epidemiological study on tendon ruptures of the knee extensor mechanism at a level 1 hospital. Rev Bras Ortop 2015;47:719-23.
3. Stinner D, Orr JD, Hsu JR. Fluoroquinolone-associated bilateral patellar tendon rupture: A case report and review of the literature. Mil Med 2010;175:457-9. Pages 457–459, https://doi.org/10.7205/MILMED-D-09-00142
4. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HG, Stricker BH. Fluoroquinolones and risk of Achilles tendon disorders: case-control study. BMJ. 2002 Jun 1;324(7349):1306-7. doi: 10.1136/bmj.324.7349.1306. PMID: 12039823; PMCID: PMC113766.
5. Yang F, Wang GD, Huang R, Ma H, Zhao XW. Ligament augmentation reconstruction system artificial ligaments in patellar tendon reconstruction – a chronic patellar tendon rupture after multiple operations: A case report. World J Clin Cases. 2020 Feb 26;8(4):831-837. doi: 10.12998/wjcc.v8.i4.831. PMID: 32149068; PMCID: PMC7052563.
6. Brinkman JC, Reeson E, Chhabra A. Acute Patellar Tendon Ruptures: An Update on Management. J Am Acad Orthop Surg Glob Res Rev. 2024 Apr 3;8(4):e24.00060. doi: 10.5435/JAAOSGlobal-D-24-00060. PMID: 38569093; PMCID: PMC10994452.
7. Zhang J, Keenan C, Wang JH. The effects of dexamethasone on human patellar tendon stem cells: implications for dexamethasone treatment of tendon injury. J Orthop Res. 2013 Jan;31(1):105-10. doi: 10.1002/jor.22193. Epub 2012 Aug 8. PMID: 22886634; PMCID: PMC3498577.
8. Pritchard CH, Berney S. Patellar tendon rupture in systemic lupus erythematosus. J Rheumatol 1989;16:786-8.
9. Golman M, Wright ML, Wong TT, Lynch TS, Ahmad CS, Thomopoulos S, Popkin CA. Rethinking Patellar Tendinopathy and Partial Patellar Tendon Tears: A Novel Classification System. Am J Sports Med. 2020 Feb;48(2):359-369. doi: 10.1177/0363546519894333. Epub 2020 Jan 8. PMID: 31913662.
10. Swamy GN, Nanjayan SK, Yallappa S, Bishnoi A, Pickering SA. Is ultrasound diagnosis reliable in acute extensor tendon injuries of the knee? Acta Orthop Belg 2012;78:764-70.
11. Karlsson J, Kälebo P, Goksör LA, Thomée R, Swärd L. Partial rupture of the patellar ligament. Am J Sports Med 1992;20:390-5.
12. Moya D, Loske AM, Hobrough P, Moya C. History of Shock Waves and Radial Pressure Waves From Newton to Our Times. Journal of Regenerative Science. Jan-Jun 2023; 3(1): 09-14. DOI:10.13107/jrs.2023.v03.i01.70
13. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
14. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidence in shockwave treatment. SETOC (Spanish Society of Shockwave Treatment) recommendations Rehabilitación (Madr) 2021;55:291-300. DOI: 10.1016/j.rh.2021.02.002
15. Cleveland RO, Chitnis PV, McClure SR. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol. 2007 Aug;33(8):1327-35. doi: 10.1016/j.ultrasmedbio.2007.02.014. Epub 2007 Apr 27. PMID: 17467154.
16. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
17. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012 Mar 20;7:11. doi: 10.1186/1749-799X-7-11. PMID: 22433113; PMCID: PMC3342893.
18. Moreno GM. Definition and classification of obesity. R Méd Clín Las Condes 2012;23:124-8.
19. Wright JG, Einhorn TA, Heckman JD. Grades of recommendation. J Bone Joint Surg Am. 2005 Sep;87(9):1909-10. doi: 10.2106/JBJS.8709.edit. PMID: 16140803.
20. van der Worp H, Zwerver J, Hamstra M, van den Akker-Scheek I, Diercks RL. No difference in effectiveness between focused and radial shockwave therapy for treating patellar tendinopathy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2014 Sep;22(9):2026-32. doi: 10.1007/s00167-013-2522-z. Epub 2013 May 12. PMID: 23666379.
21. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997 Jul;158(1):4-11. doi: 10.1097/00005392-199707000-00003. PMID: 9186313.
22. Thijs KM, Zwerver J, Backx FJ, Steeneken V, Rayer S, Groenenboom P, Moen MH. Effectiveness of Shockwave Treatment Combined With Eccentric Training for Patellar Tendinopathy: A Double-Blinded Randomized Study. Clin J Sport Med. 2017 Mar;27(2):89-96. doi: 10.1097/JSM.0000000000000332. PMID: 27347857.


 

How to Cite this article: Salinas AAF, Cordero GCR, Rodriguez LBG, and Olivares LCV. Regeneration of the Patellar Tendon with Radial Pressure Waves in a Sharp Injury: A Case Report. Journal of Regenerative Science 2024;January-June;4(1):20-23.

[Article Text HTML]       [Full Text PDF] 


Use of Focused Shock Waves in an Acute Talar Head Fracture

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 24-26 | Osvaldo Valle

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.129

Author: Osvaldo Valle [1]

[1] Department of Orthopedic Surgeon Surgery, Ankle and Foot Team, MEDS Clinic, Santiago de Chile; President of ACHITOC (Chilean Association of Tissue Engineering and Shock Waves).

Address of Correspondence
Dr. Osvaldo Valle,
Department of Orthopedic Surgeon, Ankle and Foot Team, MEDS Clinic, Santiago de Chile; President of ACHITOC (Chilean Association of Tissue Engineering and Shock Waves).
E-mail: tovato@gmail.com


Abstract

Talar fractures are rare and can be difficult to manage. Even in the absence of complications, the treatment of this type of injury can be prolonged and uncomfortable for the patient. Focused shock waves have been shown to be effective in the treatment of delayed unions and non-unions. In this case report, we share our experience with the use of focused shock waves in an acute talus fracture in a patient with risk factors for healing.
Keywords: Talus, Talar fractures, Shock waves, Bone marrow edema


References:


1. Caracchini G, Pietragalla M, De Renzis A, Galluzzo M, Carbone M, Zappia M, Russo A, Greco F, Miele V. Talar fractures: radiological and CT evaluation and classification systems. Acta Biomed. 2018 Jan 19;89(1-S):151-165. doi: 10.23750/abm.v89i1-S.7019. PMID: 29350644; PMCID: PMC6179081.
2. Anderson MR, Flemister AS, Ketz JP. Operative Treatment of Talar Head Fractures: Surgical Technique. J Orthop Trauma. 2018 Aug;32(8):e334-e338. doi: 10.1097/BOT.0000000000001178. Erratum in: J Orthop Trauma. 2019 Oct;33(10):e409. doi: 10.1097/BOT.0000000000001596. PMID: 29664882.
3. Pradhan A, Najefi A, Patel A, Vris A, Heidari N, Malagelada F, Parker L, Jeyaseelan L. Complications after talus fractures: A trauma centre experience. Injury. 2023 Feb;54(2):772-777. doi: 10.1016/j.injury.2022.12.013. Epub 2022 Dec 15. PMID: 36543737.
4. Schwartz AM, Runge WO, Hsu AR, Bariteau JT. Fractures of the Talus: Current Concepts. Foot Ankle Orthop. 2020 Feb 13;5(1):2473011419900766. doi: 10.1177/2473011419900766. PMID: 35097362; PMCID: PMC8697161.
5. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
6. Wang CJ, Liu HC, Fu TH. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity. Arch Orthop Trauma Surg. 2007 Feb;127(2):137-42. doi: 10.1007/s00402-006-0236-0. Epub 2006 Oct 13. PMID: 17053946.
7. Vallier HA. Fractures of the Talus: State of the Art. J Orthop Trauma. 2015 Sep;29(9):385-92. doi: 10.1097/BOT.0000000000000378. PMID: 26299809.
8. Higgins TF, Baumgaertner MR. Diagnosis and treatment of fractures of the talus: a comprehensive review of the literature. Foot Ankle Int. 1999 Sep;20(9):595-605. doi: 10.1177/107110079902000911. PMID: 10509689.
9. Jordan RK, Bafna KR, Liu J, Ebraheim NA. Complications of Talar Neck Fractures by Hawkins Classification: A Systematic Review. J Foot Ankle Surg. 2017 Jul-Aug;56(4):817-821. doi: 10.1053/j.jfas.2017.04.013. PMID: 28633784.
10. Ohl X, Harisboure A, Hemery X, Dehoux E. Long-term follow-up after surgical treatment of talar fractures: Twenty cases with an average follow-up of 7.5 years. Int Orthop. 2011 Jan;35(1):93-9. doi: 10.1007/s00264-009-0930-y. Epub 2009 Dec 22. PMID: 20033158; PMCID: PMC3014484.
11. Vallier HA, Nork SE, Barei DP, Benirschke SK, Sangeorzan BJ. Talar neck fractures: results and outcomes. J Bone Joint Surg Am. 2004 Aug;86(8):1616-24. PMID: 15292407.
12. Zura R, Mehta S, Della Rocca GJ, Steen RG. Biological Risk Factors for Nonunion of Bone Fracture. JBJS Rev. 2016 Jan 5;4(1):e5. doi: 10.2106/JBJS.RVW.O.00008. PMID: 27490008.
13. Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, Caraffa A. Obesity and Bone: A Complex Relationship. Int J Mol Sci. 2021 Dec 20;22(24):13662. doi: 10.3390/ijms222413662. PMID: 34948466; PMCID: PMC8706946.
14. Liu SH, Cerri-Droz P, Ling K, Loyst RA, Wang KE, Tsouris N, Komatsu DE, Wang ED. Chronic Steroid Use, Complications, and Readmission Following Open Reduction Internal Fixation of Distal Radius Fracture. J Hand Surg Glob Online. 2023 Aug 19;5(6):757-762. doi: 10.1016/j.jhsg.2023.07.007. PMID: 38106944; PMCID: PMC10721537.
15. Moonen L, Gorter E, Schipper I. The importance of vitamin D in treatment of fracture non-union: A case report. Nutrition. 2021 Jul-Aug;87-88:111192. doi: 10.1016/j.nut.2021.111192. Epub 2021 Feb 10. PMID: 33761443.
16. Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab. 2011 Aug;25(4):585-91. doi: 10.1016/j.beem.2011.05.002. PMID: 21872800.
17. Wang CJ, Wang FS, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg. 2008 Aug;128(8):879-84. doi: 10.1007/s00402-008-0663-1. Epub 2008 Jun 17. PMID: 18560855.


 

How to Cite this article: Valle O. Use of focused shock waves in an acute talar head fracture. Journal of Regenerative Science 2024;January-June;4(1):24-26.

 


[Article Text HTML]       [Full Text PDF] 


20 Years of Treatment of Bone Non-Unions and Delayed Unions with Shock Waves

??? | Vol 4 | Issue 1 |  January-June 2024 | page: 27-30| Paulo F Kertzman

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.131

Author: Paulo F Kertzman [1]

[1] Departamento de Ortopedia, Santa Casa de São Paulo, São Paulo, SP, Brazil.

Address of Correspondence
Dr. Paulo F Kertzman
Departamento de Ortopedia, Santa Casa de São Paulo, São Paulo, SP, Brazil.
E-mail: paulofkertzman@uol.com.br


Abstract

The treatment of bone non-unions continues to be complex and prolonged in many cases. The advent of the use of mechanical waves has made it possible, through the phenomenon of mechanotransduction, to have a non-invasive tool with a low rate of complications.
This study analyzes the experience of the last 20 years with the use of shock waves.

Keywords: Non-union, shock waves, Delayed union, Mechanotransduction


References:


1- Bell A, Templeman D, Weinlein JC. Nonunion of the femur and Tibia: An update. Orthop Clin North Am 2016;47:365-75.
2- Ekegren CL, Edwards ER, de Steiger R, Gabbe BJ. Incidence, Costs and Predictors of Non-Union, Delayed Union and Mal-Union Following Long Bone Fracture. Int J Environ Res Public Health. 2018 Dec 13;15(12):2845. doi: 10.3390/ijerph15122845. PMID: 30551632; PMCID: PMC6313538.
3- Rupp M, Biehl C, Budak M, Thormann U, Heiss C, Alt V. Diaphyseal long bone nonunions – Types, aetiology, economics, and treatment recommendations. Int Orthop 2017;42:247-58.
4- Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–First choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
5- Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 2001;387:95-101.
6- Haupt G, Haupt A, Gerety B, Chvapil M. Enhancement of fracture healing with extracorporeal shock waves. J Urol 1990;158:4.
7- Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15(3):181-4. doi: 10.1007/BF00192289. PMID: 1743828.
8- Main G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M. Influence of shock waves on fracture healing. Urology 1992;39:529-32.
9- Kertzman P, Lenza M, Pedrinelli A, Ejnisman B. Shockwave treatment for musculoskeletal diseases and bone consolidation: Qualitative analysis of the literature. Rev Bras Ortop 2015;50:3-8.
10- Cheng JH, Wang CJ. Biological mechanism of shockwave in bone. Int J Surg. 2015 Dec;24(Pt B):143-6. doi: 10.1016/j.ijsu.2015.06.059. Epub 2015 Jun 25. PMID: 26118613.
11- Schnurrer-Luke-Vrbanić T, Avancini-Dobrović V, Sosa I, Cvijanovic O, Bobinac D. Effect of radial shock wave therapy on long bone fracture repair. J Biol Regul Homeost Agents. 2018 Jul-Aug;32(4):875-879. PMID: 30043570.
12- d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015 Dec;24(Pt B):147-53. doi: 10.1016/j.ijsu.2015.11.030. Epub 2015 Nov 28. PMID: 26612525.
13- Wang CJ, Wang FS, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg. 2008 Aug;128(8):879-84. doi: 10.1007/s00402-008-0663-1. Epub 2008 Jun 17. PMID: 18560855.
14- Ha CH, Kim S, Chung J, An SH, Kwon K. Extracorporeal shock wave stimulates expression of the angiogenic genes via mechanosensory complex in endothelial cells: mimetic effect of fluid shear stress in endothelial cells. Int J Cardiol. 2013 Oct 9;168(4):4168-77. doi: 10.1016/j.ijcard.2013.07.112. Epub 2013 Aug 1. PMID: 23915523.
15- Xu JK, Chen HJ, Li XD, Huang ZL, Xu H, Yang HL, Hu J. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem. 2012 Jul 27;287(31):26200-12. doi: 10.1074/jbc.M112.349811. Epub 2012 May 31. PMID: 22654119; PMCID: PMC3406705.
16- Sun D, Junger WG, Yuan C, Zhang W, Bao Y, Qin D, Wang C, Tan L, Qi B, Zhu D, Zhang X, Yu T. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells. 2013 Jun;31(6):1170-80. doi: 10.1002/stem.1356. PMID: 23404811; PMCID: PMC4243484.
17- Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, et al. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 2004;279:10331-7.
18- Kusnierczak D, Brocai DR, Vettel U, Loew M. Der Einfluss der extrakorporalen Stosswellenapplikation (ESWA) auf das biologische Verhalten von Knochenzellen in vitro [Effect of extracorporeal shockwave administration on biological behavior of bone cells in vitro]. Z Orthop Ihre Grenzgeb. 2000 Jan-Feb;138(1):29-33. German. doi: 10.1055/s-2000-10109. PMID: 10730360.
19- Császár NB, Angstman NB, Milz S, Sprecher CM, Kobel P, Farhat M, Furia JP, Schmitz C. Radial Shock Wave Devices Generate Cavitation. PLoS One. 2015 Oct 28;10(10):e0140541. doi: 10.1371/journal.pone.0140541. PMID: 26509573; PMCID: PMC4625004.
20- Xu ZH, Jiang Q, Chen DY, Xiong J, Shi DQ, Yuan T, Zhu XL. Extracorporeal shock wave treatment in nonunions of long bone fractures. Int Orthop. 2009 Jun;33(3):789-93. doi: 10.1007/s00264-008-0553-8. Epub 2008 Apr 25. PMID: 18437381; PMCID: PMC2903117.
21- Bara T, Synder M. Nine-years experience with the use of shock waves for treatment of bone union disturbances. Ortop Traumatol Rehabil. 2007 May-Jun;9(3):254-8. English, Polish. PMID: 17721422.
22- Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res. 2001 Jun;(387):102-11. doi: 10.1097/00003086-200106000-00014. PMID: 11400870.
23- Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 2001;387:90-4.
24- Vulpiani MC, Vetrano M, Conforti F, Minutolo L, Trischitta D, Furia JP, Ferretti A. Effects of extracorporeal shock wave therapy on fracture nonunions. Am J Orthop (Belle Mead NJ). 2012 Sep;41(9):E122-7. PMID: 23365814.
25- Kuo SJ, Su IC, Wang CJ, Ko JY. Extracorporeal shockwave therapy (ESWT) in the treatment of atrophic non-unions of femoral shaft fractures. Int J Surg. 2015 Dec;24(Pt B):131-4. doi: 10.1016/j.ijsu.2015.06.075. Epub 2015 Jul 9. PMID: 26166737.
26- Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
27- Kertzman P, Császár NB, Furia JP, Schmitz C. Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: A retrospective case series. J Orthop Surg Res 2017;12:164.
28- Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009;91:2589-97.
29- Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 2010;92:846-54.
30- Quadlbauer S, Pezzei C, Beer T, Jurkowitsch J, Keuchel T, Schlintner C, Schaden W, Hausner T, Leixnering M. Treatment of scaphoid waist nonunion by one, two headless compression screws or plate with or without additional extracorporeal shockwave therapy. Arch Orthop Trauma Surg. 2019 Feb;139(2):281-293. doi: 10.1007/s00402-018-3087-6. Epub 2018 Dec 6. PMID: 30523445.
31- Notarnicola A, Moretti L, Tafuri S, Gigliotti S, Russo S, Musci L, Moretti B. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol. 2010 Aug;36(8):1306-13. doi: 10.1016/j.ultrasmedbio.2010.05.004. PMID: 20691920.
32- Schmitz C, Császár NB, Milz S, Schieker M, Maffulli N, Rompe JD, Furia JP. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull. 2015;116(1):115-38. doi: 10.1093/bmb/ldv047. Epub 2015 Nov 18. PMID: 26585999; PMCID: PMC4674007.
33- Birnbaum K, Wirtz DC, Siebert CH, Heller KD. Use of extracorporeal shock-wave therapy (ESWT) in the treatment of non-unions. A review of the literature. Arch Orthop Trauma Surg. 2002 Jul;122(6):324-30. doi: 10.1007/s00402-001-0365-4. Epub 2002 Mar 12. PMID: 12136295.
34- Petrisor B, Lisson S, Sprague S. Extracorporeal shockwave therapy: A systematic review of its use in fracture management. Indian J Orthop. 2009 Apr;43(2):161-7. doi: 10.4103/0019-5413.50851. PMID: 19838365; PMCID: PMC2762266.
35- Willems A, van der Jagt OP, Meuffels DE. Extracorporeal Shock Wave Treatment for Delayed Union and Nonunion Fractures: A Systematic Review. J Orthop Trauma. 2019 Feb;33(2):97-103. doi: 10.1097/BOT.0000000000001361. PMID: 30570614.
36- Schnurrer-Luke-Vrbanic T, Avancini-Dobrovic V, Sosa I, Cvijanovic O, Bobinac D. VEGF-A expression in soft tissues repaired by shockwave therapy: differences between modalities. J Biol Regul Homeost Agents. 2018 May-Jun;32(3):583-588. PMID: 29921384.
37- Gollwitzer H, Gloeck T, Roessner M, Langer R, Horn C, Gerdesmeyer L, et al. Radial extracorporeal shock wave therapy (rESWT) induces new bone formation in vivo: Results of an animal study in rabbits. Ultrasound Med Biol 2013;39:126-33.
38- Diaz-Rodriguez L, Garcia-Marinez O, Arroyo-Morales M, Ramos-Torrecillas J, De Luna-Bertos E, Ruiz C. Effect of radial extracorporeal shock wave therapy on proliferation, cell viability and phagocytosis of human osteoblasts (MG63). Adv Sci Lett 2012;17:325-9.
39- Silk ZM, Alhuwaila RS, Calder JD. Low-energy extracorporeal shock wave therapy to treat lesser metatarsal fracture nonunion: Case report. Foot Ankle Int 2012;33:1128-32.
40- Kertzman PF, Fucs PM. Does radial shock wave therapy works in pseudarthrosis? Prospective analysis of forty four patients. Int Orthop 2021;45:43-9.


 

How to Cite this article: Kertzman PF. 20 Years of Treatment of Non-Unions and Delayed Unions with Shock Waves. Journal of Regenerative Science 2024;January-June;4(1):27-30.

 


[Article Text HTML]       [Full Text PDF] 


Extracorporeal Shock Wave Treatment and Multimodal Pain Management for Tarsal Tunnel Syndrome Associated with Plantar Fasciitis

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 31-34 | Ricardo Kobayashi

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.133

 

Author: Ricardo Kobayashi [1]

[1] Department of Neurology, Pain Center, University of São Paulo, Brazil.

Address of Correspondence
Dr. Ricardo Kobayashi,
Department of Neurology, Pain Center, University of São Paulo, Brazil.
E-mail: koba@globo.com


Abstract

Introduction: Plantar fasciitis (PF) is an important cause of musculoskeletal pain and radial pressure waves (RPWs) can be used for patients not improving after 3 months of other non-operative measures. However, in refractory cases of PT, it is imperative to investigate possible differential diagnoses and one of its important differential diagnoses is tarsal tunnel syndrome (TTS). TTS is a rare but important condition which is regularly under diagnosed leading to a range of symptoms affecting the plantar aspect of the foot typically associated with a neuropathic pain pattern.
Case Report: We report a case of PF with TTS and associated neuropathic components. At first, nortriptyline 50 mg and 5% lidocaine patch were used, which improved the neuropathic pattern. After that, three RPW sessions were conducted at weekly intervals, with energy between 2 and 3 bars, frequency between 5 and 7 hertz. In addition to the area of greatest pain in the plantar fascia, treatment was also applied to the myofascial trigger points of the triceps surae and posterior tibial muscles. Three months after the last RPW session, the patient reported a 90% improvement in pain intensity, without limitations in daily activities.
Conclusion: This case highlights the importance of differential diagnoses of PF, especially before the indication of RPW in refractory cases. In addition to the neuropathic pattern associated with TTS, neuropathic pain associated with tendinopathies of the lower limbs is common (1/4 of cases) and needs to be identified and treated in conjunction with tendinopathy for a more effective result.
Keywords: Chronic pain, Plantar fasciitis, Tarsal tunnel syndrome, Mixed pain, Neuropathic pain, Shockwaves


References:

1. Charles R, Fang L, Zhu R, Wang J. The effectiveness of shockwave therapy on patellar tendinopathy, Achilles tendinopathy, and plantar fasciitis: a systematic review and meta-analysis. Front Immunol. 2023 Aug 16;14:1193835. doi: 10.3389/fimmu.2023.1193835. PMID: 37662911; PMCID: PMC10468604.
2. Wheeler PC. Up to a quarter of patients with certain chronic recalcitrant tendinopathies may have central sensitisation: a prospective cohort of more than 300 patients. Br J Pain. 2019 Aug;13(3):137-144. doi: 10.1177/2049463718800352. Epub 2018 Sep 21. PMID: 31308939; PMCID: PMC6613072.
3. Ahmad M, Tsang K, Mackenney PJ, Adedapo AO. Tarsal tunnel syndrome: A literature review. Foot Ankle Surg. 2012 Sep;18(3):149-52. doi: 10.1016/j.fas.2011.10.007. Epub 2011 Dec 21. PMID: 22857954.
4. Wheeler PC. Neuropathic pain may be common in chronic lower limb tendinopathy: a prospective cohort study. Br J Pain. 2017 Feb;11(1):16-22. doi: 10.1177/2049463716680560. Epub 2016 Nov 24. PMID: 28386400; PMCID: PMC5370628.
5. Camargo LS, Kobayashi R. Case report: Extracorporeal shock wave treatment in plantar fasciitis with an associated neuropathic component. How to optimize the result? J Regen Sci 2022;2:21-3.
6. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, Cunin G, Fermanian J, Ginies P, Grun-Overdyking A, Jafari-Schluep H, Lantéri-Minet M, Laurent B, Mick G, Serrie A, Valade D, Vicaut E. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (Dn4). Pain. 2005 Mar;114(1-2):29-36. doi : 10.1016/j.pain.2004.12.010. Epub 2005 Jan 26. PMID: 15733628.
7. Santos JG, Brito JO, de Andrade DC, Kaziyama VM, Ferreira KA, Souza I, et al. Translation to Portuguese and validation of the Douleur Neuropathique 4 questionnaire. J Pain. 2010 May;11(5):484-90. doi: 10.1016/j.jpain.2009.09.014. Epub 2009 Dec 16. PMID: 20015708.
8. Aqil A, Siddiqui MR, Solan M, Redfern DJ, Gulati V, Cobb JP. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis: a meta-analysis of RCTs. Clin Orthop Relat Res. 2013 Nov;471(11):3645-52. doi: 10.1007/s11999-013-3132-2. Epub 2013 Jun 28. PMID: 23813184; PMCID:PMC3792262.
9. Sun J, Gao F, Wang Y, Sun W, Jiang B, Li Z. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis: A meta-analysis of RCTs. Medicine (Baltimore). 2017Apr;96(15):e6621. doi: 10.1097/MD.0000000000006621. PMID: 28403111; PMCID: PMC5403108.
10. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D et al. Neuropathic pain. Nat Rev Dis Primers. 2017 Feb 16;3:17002. doi: 10.1038/nrdp.2017.2. PMID: 28205574; PMCID: PMC5371025.
11. Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, Nurmikko T. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010 Sep;17(9):1113-e88. doi: 10.1111/j.1468-1331.2010.02999.x. Epub 2010 Apr 9. PMID: 20402746.
12. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol.2015 Feb;14(2):162-73. doi: 10.1016/S1474-4422(14)70251-0. Epub 2015 Jan 7. PMID: 25575710; PMCID: PMC4493167.
13. Finnerup NB. Nonnarcotic Methods of Pain Management N Engl J Med. 2019 Jun 20;380(25):2440-2448. doi: 10.1056/NEJMra1807061. PMID: 31216399.

 


How to Cite this article: Kobayashi R | Extracorporeal Shock Wave Treatment and Multimodal Pain Management for Tarsal Tunnel Syndrome Associated with Plantar Fasciitis. Journal of Regenerative Science 2024;January-June;4(1):31-34

[Article Text HTML]       [Full Text PDF] 


Errors in Shock Wave Theory Can Impact Clinical Outcomes

Bibliographic Analysis | Vol 4 | Issue 1 |  January-June 2024 | page: 35-36 | Achim M. Loske, Daniel Moya

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.135

 

Author: Achim M. Loske [1], Daniel Moya [2]

[1] Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México,
[2] Department of Orthopaedics, Hospital Británico de Buenos Aires, Argentina.

Address of Correspondence
Dr. Daniel Moya,
Department of Orthopaedics, Hospital Británico de Buenos Aires, Argentina.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

The mechanical waves that are used therapeutically are well defined from the point of view of physics. The differences between focused and radial waves are very important, however there is enormous confusion in the literature.
In the present bibliographic analysis we make a critical comment on a publication in which a pneumatic source is illustrated and presented as generating focused shock waves.
We believe that every effort should be made to be strict in definitions, not only because science is based on the search for truth, but also because errors in shock wave theory can impact clinical outcomes.


References:

1. An S, Li J, Xie W, Yin N, Li Y, Hu Y. Extracorporeal shockwave treatment in knee osteoarthritis: Therapeutic effects and possible mechanism. Biosci Rep 2020;40:BSR20200926.
2. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
3. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017.
4. Ueberle F, Rad A. Ballistic pain therapy devices: Measurement of pressure pulse parameters. Biomed Tech 2012;57:700-3.
5. International Society for Medical Shockwave Therapy. Physical Principles of ESWT Basic Physical Principles. Available from: https://www.shockwavetherapy.org/about-eswt/physical-principles-of-eswt [Last accessed on 2021 Jan 26].
6. International Society for Medical Shockwave Therapy. ISMST Recommendations-Terms and Definitions. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/pdfs/formulare/consensus_mbradial_pressure_wave_2017_ss.pdf [Last accessed on 2021 Jan 26].
7. Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular (Onlat) Ondas de Choque en Medicina: La Nueva Frontera. Available from: https://onlat.net/?page_id=2491 [Last accessed on 2021 Jan 26].
8. European Commission DG Health and Consumer. Medical Devices: Guidance Document. Classification of Medical Devices. MEDDEV 2. 4/1 Rev. 9; 2010. Available from: https://pdf4pro.com/download/medical-devices-guidance-document-6fa97.html [Last accessed on 2021 Jan 26].


How to Cite this article:  Loske AM, Moya D. Errors in Shock Wave Theory Can Impact Clinical Outcomes. Journal of Regenerative Science 2024;January-June;4(1):35-36.

[Article Text HTML]       [Full Text PDF]