Posts

Regeneration of the Patellar Tendon with Radial Pressure Waves in a Sharp Injury: A Case Report

Case Report | Vol 4 | Issue 1 |  January-June 2024 | page: 20-23 | A A Flores Salinas, G C Reyes Cordero, L B García Rodriguez, L C Villa Olivares

DOI: https://doi.org/10.13107/jrs.2024.v04.i01.127

Author: A A Flores Salinas [1], G C Reyes Cordero [2], L B García Rodriguez [3], L C Villa Olivares [4]

[1] Department of Rehabilitation Medicine, Medical Director of Physis Clinics, Chihuahua, Mexico,
[2] Department of Rheumatology, Hospital Ángeles, Chihuahua, Mexico,
[3] Department of Orthopedics and Traumatology, Hospital Central Universitario, Chihuahua, Mexico,
[4] Department of Radiology, Civil Pensions of the State of Chihuahua, Mexico.

Address of Correspondence
Dr. A A Flores Salinas,
Department of Rehabilitation Medicine, Medical Director of Physis Clinics, Chihuahua, Mexico.
Email- drazaelflores@hotmail.com


Abstract

Patellar tendon ruptures are rare injuries and are more commonly associated with predisposing factors and previous surgical procedures than with direct trauma. Acute partial-thickness tears are usually treated with immobilization and rehabilitation. The literature recommends surgical management of partial ruptures of the patellar tendon after 6 months of failure of conservative treatments and in acute cases with a compromise >50–55% of the tendon. Radial pressure wave therapy is a safe, non-invasive technique with scientific support in tissue regeneration; it is found as one of the therapeutic alternatives for the management of tendinopathy and partial ruptures of the patellar tendon. The present case report shows the effectiveness of radial pressure wave therapy in a shear injury of the patellar tendon, with a compromise of at least 70%. We have not found similar cases previously reported in the literature, highlighting its relevance.
Keywords: Patellar tendon, Radial pressure waves, Patellar tendon rupture, Cutting injury


References:

1. Matava MJ. Patellar tendon ruptures. J Am Acad Orthop Surg 1996;4:287-96.
2. Pires R, Prado J, Hara R, Ferreira E, Schiavo L, Giordano V, et al. Epidemiological study on tendon ruptures of the knee extensor mechanism at a level 1 hospital. Rev Bras Ortop 2015;47:719-23.
3. Stinner D, Orr JD, Hsu JR. Fluoroquinolone-associated bilateral patellar tendon rupture: A case report and review of the literature. Mil Med 2010;175:457-9. Pages 457–459, https://doi.org/10.7205/MILMED-D-09-00142
4. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HG, Stricker BH. Fluoroquinolones and risk of Achilles tendon disorders: case-control study. BMJ. 2002 Jun 1;324(7349):1306-7. doi: 10.1136/bmj.324.7349.1306. PMID: 12039823; PMCID: PMC113766.
5. Yang F, Wang GD, Huang R, Ma H, Zhao XW. Ligament augmentation reconstruction system artificial ligaments in patellar tendon reconstruction – a chronic patellar tendon rupture after multiple operations: A case report. World J Clin Cases. 2020 Feb 26;8(4):831-837. doi: 10.12998/wjcc.v8.i4.831. PMID: 32149068; PMCID: PMC7052563.
6. Brinkman JC, Reeson E, Chhabra A. Acute Patellar Tendon Ruptures: An Update on Management. J Am Acad Orthop Surg Glob Res Rev. 2024 Apr 3;8(4):e24.00060. doi: 10.5435/JAAOSGlobal-D-24-00060. PMID: 38569093; PMCID: PMC10994452.
7. Zhang J, Keenan C, Wang JH. The effects of dexamethasone on human patellar tendon stem cells: implications for dexamethasone treatment of tendon injury. J Orthop Res. 2013 Jan;31(1):105-10. doi: 10.1002/jor.22193. Epub 2012 Aug 8. PMID: 22886634; PMCID: PMC3498577.
8. Pritchard CH, Berney S. Patellar tendon rupture in systemic lupus erythematosus. J Rheumatol 1989;16:786-8.
9. Golman M, Wright ML, Wong TT, Lynch TS, Ahmad CS, Thomopoulos S, Popkin CA. Rethinking Patellar Tendinopathy and Partial Patellar Tendon Tears: A Novel Classification System. Am J Sports Med. 2020 Feb;48(2):359-369. doi: 10.1177/0363546519894333. Epub 2020 Jan 8. PMID: 31913662.
10. Swamy GN, Nanjayan SK, Yallappa S, Bishnoi A, Pickering SA. Is ultrasound diagnosis reliable in acute extensor tendon injuries of the knee? Acta Orthop Belg 2012;78:764-70.
11. Karlsson J, Kälebo P, Goksör LA, Thomée R, Swärd L. Partial rupture of the patellar ligament. Am J Sports Med 1992;20:390-5.
12. Moya D, Loske AM, Hobrough P, Moya C. History of Shock Waves and Radial Pressure Waves From Newton to Our Times. Journal of Regenerative Science. Jan-Jun 2023; 3(1): 09-14. DOI:10.13107/jrs.2023.v03.i01.70
13. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The Role of Extracorporeal Shockwave Treatment in Musculoskeletal Disorders. J Bone Joint Surg Am. 2018 Feb 7;100(3):251-263. doi: 10.2106/JBJS.17.00661. PMID: 29406349.
14. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidence in shockwave treatment. SETOC (Spanish Society of Shockwave Treatment) recommendations Rehabilitación (Madr) 2021;55:291-300. DOI: 10.1016/j.rh.2021.02.002
15. Cleveland RO, Chitnis PV, McClure SR. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol. 2007 Aug;33(8):1327-35. doi: 10.1016/j.ultrasmedbio.2007.02.014. Epub 2007 Apr 27. PMID: 17467154.
16. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
17. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012 Mar 20;7:11. doi: 10.1186/1749-799X-7-11. PMID: 22433113; PMCID: PMC3342893.
18. Moreno GM. Definition and classification of obesity. R Méd Clín Las Condes 2012;23:124-8.
19. Wright JG, Einhorn TA, Heckman JD. Grades of recommendation. J Bone Joint Surg Am. 2005 Sep;87(9):1909-10. doi: 10.2106/JBJS.8709.edit. PMID: 16140803.
20. van der Worp H, Zwerver J, Hamstra M, van den Akker-Scheek I, Diercks RL. No difference in effectiveness between focused and radial shockwave therapy for treating patellar tendinopathy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2014 Sep;22(9):2026-32. doi: 10.1007/s00167-013-2522-z. Epub 2013 May 12. PMID: 23666379.
21. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997 Jul;158(1):4-11. doi: 10.1097/00005392-199707000-00003. PMID: 9186313.
22. Thijs KM, Zwerver J, Backx FJ, Steeneken V, Rayer S, Groenenboom P, Moen MH. Effectiveness of Shockwave Treatment Combined With Eccentric Training for Patellar Tendinopathy: A Double-Blinded Randomized Study. Clin J Sport Med. 2017 Mar;27(2):89-96. doi: 10.1097/JSM.0000000000000332. PMID: 27347857.


 

How to Cite this article: Salinas AAF, Cordero GCR, Rodriguez LBG, and Olivares LCV. Regeneration of the Patellar Tendon with Radial Pressure Waves in a Sharp Injury: A Case Report. Journal of Regenerative Science 2024;January-June;4(1):20-23.

[Article Text HTML]       [Full Text PDF] 


Comparison of Radial Pressure Waves and Focused Extracorporeal Shock Waves in Treatment of Osteoarthritis of the Knee

Original Article | Vol 3 | Issue 2 |  July-December 2023 | page: 62-66 | Xichun Sun, Suoli Cheng, Xianghua Xiong, Zhengcheng Wang

DOI: https://doi.org/10.13107/jrs.2023.v03.i02.109


Author: Xichun Sun [1], Suoli Cheng [1], Xianghua Xiong [2], Zhengcheng Wang [1]

[1] Department of Orthopedics, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China,
[2] Department of Orthopedics, People’s Hospital of Liangping District, Chongqing, China.

Address of Correspondence

Dr. Suoli Cheng,
Department of Orthopedics, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
E-mail: chengsuoli@126.com


Abstract

Objective: The aim of this study is to investigate and compare the clinical efficacy of radial pressure waves and focused external shock wave therapy for knee osteoarthritis (KOA).
Materials and Methods: From October 2020, 90 patients aged 45–65 years old with Kellgren and Lawrence classification (K-L) stage I and II of KOA were selected in our hospital or randomly assigned to 3 groups with 30 cases in each group. One group was treated with antiinflamatory medication. The other two groups received one course of treatment (once a week, 4 times in total) performed by using radial focused shock
waves respectively, and follow-up was conducted by telephone and outpatient review 3, 6, and 9 months after the treatment. Visual Analog Scale (VAS) and Western Ontario McMaster Osteoarthritis Index (WOMAC) osteoarthritis score were used before and after treatment.
Results: (1) VAS, WOMAC, and evaluation indexes of both treated groups were better than those of the control group (oral drug group); (3) The score of the radial group was significantly different from that of the focused group (P > 0.05).
Conclusion: (1) Focused and radial pressure waves (RPW) have good clinical therapeutic effect on early KOA (2) Comparison of long-term effect: focused shock waves are more significant than radial (3) Radial pressure waves area good indication in relatively young patients, short course of disease (within 1 year), and K-L stage I an II. (4) In older patients, with more than a year of symptoms and K-L stages II and III, focal waves are more effective than radial waves. (5) Patients with acute onset and night pain or accompanied by obvious effusion can first take nonsteroidal
drugs orally continuously for a week, and the treatment effect is better. During treatment, the drugs can be continued or stopped according to the specific conditions. When synovial edema and effusion of the joint decreased, the conventional parameters were used for treatment.
Keywords: Knee osteoarthritis, Extracorporeal shock wave therapy, Radial Pressure Waves


References:

1. Sharma L. Osteoarthritis of the knee. N Engl J Med 2021;384:51-9.
2. Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: A review of community burden and current use of primary health care. Ann Rheum Dis 2001;60:91-7.
3. Liao D. Current status of epidemiologic investigation of osteoarthritis in China. Minim Invasive Med 2017;12:521-4.
4. Li Y, Li Z, Ren R, et al. Research progress in the treatment of osteoarthritis of the knee joint. Chin Contemp Med 2019;26:24-7.
5. Qiaoqiao M. Progress of clinical treatment of knee osteoarthritis. World Digest Latest Med Inf 2019;19:146-8.
6. Romeo P, Lavanga V, Pagani D, Sansone V. Extracorporeal shock wave therapy in musculoskeletal disorders: A review. Med Princ Pract 2014;23:7-13.
7. Wu YT, Yu HK, Chen LR, Chang CN, Chen YM, Hu GC. Extracorporeal shock waves versus botulinum toxin type a in the treatment of poststroke upper limb spasticity: A randomized noninferiority trial. Arch Phys Med Rehabil 2018;99:2143-50.
8. Auersperg V, Trieb K. Extracorporeal shock wave therapy: An update. EFORT Open Rev 2020;5:584-92.
9. Guan A. Comparison of the Efficacy of the Same dose of Discrete and Focused Extracorporeal Shock Waves in the Treatment of Osteoarthritis of the Knee. Taiwan: China Medical University; 2022.
10. Joint Surgery Group of the Chinese Orthopaedic Association. Guidelines for the diagnosis and treatment of osteoarthritis. Chin J Orthop 2018;38:705-15.
11. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage 2007;15:981-1000.
12. An S, Li J, Xie W, Yin N, Li Y, Hu Y. Extracorporeal shockwave treatment in knee osteoarthritis: Therapeutic effects and possible mechanism. Biosci Rep 2020;40:BSR20200926.
13. Zhao Z, Jing R, Shi Z, Zhao B, Ai Q, Xing G. Efficacy of extracorporeal shockwave therapy for knee osteoarthritis: A randomized controlled trial. J Surg Res 2013;185:661-6.
14. Zhong Z, Liu B, Liu G, Chen J, Li Y, Chen J, et al. A randomized controlled trial on the effects of low-dose extracorporeal shockwave therapy in patients with knee osteoarthritis. Arch Phys Med Rehabil 2019;100:1695-702.
15. Uysal A, Yildizgoren MT, Guler H, Turhanoglu AD. Effects of radial extracorporeal shock wave therapy on clinical variables and isokinetic performance in patients with knee osteoarthritis: A prospective, randomized, single-blind and controlled trial. Int Orthop 2020;44:1311-9.
16. Zhang YF, Liu Y, Chou SW, Weng H. Dose-related effects of radial extracorporeal shock wave therapy for knee osteoarthritis: A randomized controlled trial. J Rehabil Med 2021;53:jrm00144.
17. Avendaño-Coy J, Comino-Suárez N, Grande-Muñoz J, Avendaño-López C, Gómez-Soriano J. Extracorporeal shockwave therapy improves pain and function in subjects with knee osteoarthritis: A systematic review and meta-analysis of randomized clinical trials. Int J Surg 2020;82:64-75.
18. Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 2003;21:984-9.
19. Li JW, Zheng SJ, Zhang JC, Huang JJ, Liu XG. Effect of acupuncture plus different frequency shock-wave interventions on pain reactions and motor function in knee osteoarthritis patients. Zhen Ci Yan Jiu 2015;40:300-3.
20. Xu JK, Chen HJ, Li XD, Huang ZL, Xu H, Yang HL, et al. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem 2012;287:26200-12.
21. Wang CJ, Hsu SL, Weng LH, Sun YC, Wang FS. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats. BMC Musculoskelet Disord 2013;14:44.
22. Chen PY, Cheng JH, Wu ZS, Chuang YC. New frontiers of extracorporeal shock wave medicine in urology from bench to clinical studies. Biomedicines 2022;10:675.
23. Fu M, Sun CK, Lin YC, Wang CJ, Wu CJ, Ko SF, et al. Extracorporeal shock wave therapy reverses ischemia-related left ventricular dysfunction and remodeling: molecular-cellular and functional assessment. PLoS One 2011;6:e24342.
24. Dias dos Santos PR, De Medeiros VP, Freire Martins de Moura JP, da Silveira Franciozi CE, Nader HB, Faloppa F. Effects of shock wave therapy on glycosaminoglycan expression during bone healing. Int J Surg 2015;24:120-3.
25. Ko NY, Chang CN, Cheng CH, Yu HK, Hu GC. Comparative effectiveness of focused extracorporeal versus radial extracorporeal shockwave therapy for knee osteoarthritis-randomized controlled study. Int J Environ Res Public Health 2022;19:9001.
26. Cleveland RO, Chitnis PV, McClure SR. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol 2007;33:1327-35.
27. Zhu Z, Zhu D, Jiang Y, Lin Y, Yang Y, Luan W. Cross-sectional study on the SF-36, the general self-efficacy, the social support, and the health promoting lifestyle of the young elderly in a community in Shanghai, China. Ann Palliat Med 2021;10:518-29.

 


How to Cite this article: Sun X, Cheng S, Xiong X, Wang Z | Comparison of Radial Pressure Waves and Focused Extracorporeal Shock Waves in Treatment of Osteoarthritis of the Knee. | Journal of Regenerative Science | Jul-Dec 2023; 3(2): 62-66.

 

[Full Text HTML] [Full Text PDF] 


Shockwave Therapy and Anesthesia: What Evidence is there?

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 13-15 | Paulo Roberto Dias Santos, Bruno Schiefer Dos Santos, Nacime Salomao Barbachan Mansur DOI: 10.13107/jrs.2021.v01.i01.009

Author: Paulo Roberto Dias Santos [1], Bruno Schiefer Dos Santos [1], Nacime Salomao Barbachan Mansur [1,2]

[1] Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

[2] Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, Iowa.

 

Address of Correspondence:
Dr. Nacime Salomao Barbachan Mansur, MD, PhD.
Departamento de Ortopedia e Traumatologia, Disciplina de Ortopedia e Traumatologia, Escola Paulista de Medicina – Universidade Federal de São Paulo, Brazil.
E-mail: nacime@uol.com.br


Abstract

Introduction: The use of anesthetics on extracorporeal shockwave therapy (ESWT) for musculoskeletal disorders is a matter of debate. Although widely performed, especially on focal procedures, its scientific background is sparse. This study aims to review the current evidence
on the use of anesthetics in ESWT.
Methods: A literature review of the PubMed, Web of Science, Embase, EBSCO, and Cochrane Library databases was performed. Studies assessing or comparing the use of any type of anesthetic in any form of shockwave therapy were collected.

Results: After inclusion and exclusion criteria assessment, a total of seven studies were found to directly address the subject and only four were original articles.
Conclusion: The produced evidence is small and lacks methodological quality. These facts support the necessity for new studies using the present technology to determine the real effect of anesthetics on ESWT.

Level of Evidence: Level V. Literature Review

Keywords: Shock waves, Radial pressure waves, Quality standards


Reference:

  1. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012;7:11.
  2. Moya D, Ramon S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  3. Schmitz C, Csaszar NB, Milz S, Schieker M, Maffulli N, Rompe JD, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: A systematic review on studies listed in the PEDro database. Br Med Bull 2015;116:115-38.
  4. Korakakis V, Whiteley R, Tzavara A, Malliaropoulos N. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: A systematic review including quantification of patient-rated pain reduction. Br J Sports Med 2018;52:387-407..
  5. Schaden W, Thiele R, Kolpl C, Pusch M, Nissan A, Attinger CE, et al. Shock wave therapy for acute and chronic soft tissue wounds: A feasibility study. J Surg Res 2007;143:112.
  6. Barbachan Mansur NS, Matsunaga FT, Carrazzone OL, Dias dos Santos P, Schiefer Dos Santos B, Nunes CG, et al. Shockwave therapy plus eccentric exercises versus isolated eccentric exercises for achilles insertional tendinopathy: A double-blinded randomized clinical trial. J Bone Joint Surg Am 2021;103:1295-302.
  7. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang CJ. Extracorporeal shockwave therapy (ESWT)–first choice treatment of fracture non-unions? Int J Surg 2015;24:179-83.
  8. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
  9. Treatment ISFMS. ISMST Guidelines. Italy: University of Florence; 2019.
  10. Rompe JD, Meurer A, Nafe B, Hofmann A, Gerdesmeyer L. Repetitive low-energy shock wave application without local anesthesia is more efficient than repetitive low-energy shock wave application with local anesthesia in the treatment of chronic plantar fasciitis. J Orthop Res 2005;23:931-41.
  11. Labek G, Auersperg V, Ziernhöld M, Poulios N, Böhler N. Influence of local anesthesia and energy level on the clinical outcome of extracorporeal shock wave-treatment of chronic plantar fasciitis. Z Orthop Ihre Grenzgeb 2005;143:240-6.
  12. Furia JP. High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am J Sports Med 2006;34:733-40.
  13. Klonschinski T, Ament SJ, Schlereth T, Rompe JD, Birklein F. Application of local anesthesia inhibits effects of low-energy extracorporeal shock wave treatment (ESWT) on nociceptors. Pain Med 2011;12:1532-7..
  14. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidences in shockwave treatment. SETOC (spanish society of shockwave treatment) recommendations. Rehabilitacion (Madr) 2021;55:291-300.
  15. Schultheiss R. Stoßwellen-technologie in orthop¨adie undunfallchirurgie. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D, editors. Die Stoßwelle. Forschung und Klinik. Germany: Attempto, Tubingen; 1995.
  16. Lohrer H, Nauck T, Korakakis V, Malliaropoulos N. Historical ESWT paradigms are overcome: A narrative review. Biomed Res Int 2016;2016:3850461.
  17. Maier M, Averbeck B, Milz S, Refior HJ, Schmitz C. Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 2003;406:237-45.
  18. Hausdorf J, Lemmens MA, Kaplan S, Marangoz C, Milz S, Odaci E, et al. Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res 2008;1207:96-101.
  19. Schmitz C, DePace R. Pain relief by extracorporeal shockwave therapy: An update on the current understanding. Urol Res 2009;37:231-4.
  20. Weber M, Birklein F, Neundorfer B, Schmelz M. Facilitated neurogenic inflammation in complex regional pain syndrome. Pain 2001;91:251-7.
  21. Hsieh ST, Lin WM. Modulation of keratinocyte proliferation by skin innervation. J Invest Dermatol 1999;113:579-86.
  22. Goto T, Yamaza T, Kido MA, Tanaka T. Light-and electron-microscopic study of the distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone. Cell Tissue Res 1998;293:87-93.
  23. Brain SD, Williams TJ. Substance P regulates the vasodilator activity of calcitonin gene-related peptide. Nature 1988;335:73-5.
  24. Fischer AA. Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain 1987;30:115-26.

 

 


How to Cite this article: Santos PRD, Dos Santos BS, Mansur NSB | Shockwave therapy and anesthesia: What evidence is there? | Journal of Regenerative Science | December 2021;1(1):13-15.

[Full Text HTML] [Full Text PDF] [XML]


Quality Standards and Techniques for the Application of Focused Shockwaves and Radial Pressure Waves in Musculoskeletal Disorders

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 9-12 | José Eid, Daniel Moya DOI: 10.13107/jrs.2021.v01.i01.007

Author: José Eid [1], Daniel Moya [2]

[1] Médico Assistente do corpo clínico do Hospital Hcor São Paulo, Brazil.

[2] Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.

Address of Correspondence:
Dr. José Eid, MD.
Médico Assistente do corpo clínico do Hospital Hcor São Paulo, Brazil.
E-mail: j.eid@uol.com.br


Abstract

Focused shockwaves and radial pressure waves are safe and effective if used correctly. Nevertheless, poor results and complications have been described due to missdiagnosis and technical errors. The aim of this review is to introduce the basic principles of quality and technical recommendations for each method.

Keywords: Shock waves, Radial pressure waves, Quality standards


Reference:

  1. Delius M, Brendel W. Historical roots of lithotripsy. J Lithotr Stone Dis 1990;2:161-3.
  2. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  3. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
  4. Novak P. Physics: F-SW and R-SW. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L, editors. Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 28-49.
  5. Consenso de la Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular Sobre las Bases Físicas de las Ondas de Choque Focales y de las Ondas de Presión Radial. Available from: https://onlat.net/?page_id=2497 [Last accessed on 2021 June 09].
  6. Eid J. ISMST Consensus Statement Terms and Definitions. https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/Consensus_MBRadial_pressure_wave_2017_SS.pdf [Last accessed on 2021 June 09].
  7. European Commission DG Health and Consumer. Medical Devices: Guidance document. Classification of medical devices. MEDDEV 2. 4/1. Available from: https://pdf4pro.com/download/medical-devices-guidance-document-6fa97.html [Last accessed on 2021 June 09].
  8. Digest Guidelines for Extracorporeal Shockwave Therapy. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/ISMST_Guidelines.pdf [Last accessed on 2021 June 09].
  9. Kibler WB. Value on the front end: Making the effective diagnosis for optimal treatment. Arthroscopy 2017;33:493-5.
  10. Moya D, Ramón S, Guiloff L, Terán P, Eid J, Serrano E. Malos resultados y complicaciones en el uso de ondas de choque focales y ondas de presión radial en patología musculoesquelética [Poor results and complications in the use of focused shockwaves and radial pressure waves in musculoskeletal pathology]. Rehabilitacion (Madr) 2021;2021:00031-1.
  11. International Society for Medical Shockwave Treatment. Consensus Statement on ESWT Indications and Contraindications. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/ISMST_consensus_statement_on_indications_and_contraindications_20161012_final.pdf [Last accessed on 2021 June 09].
  12. Wright JG. Revised grades of recommendation for summaries or reviews of orthopaedic surgical studies. J Bone Joint Surg Am 2006;88:1161-2.
  13. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Current evidences in shockwave treatment. SETOC (Spanish Society of Shockwave Treatment) recommendations. Rehabilitacion (Madr) 2021;55(4):291-300.
  14. Wang CJ, Huang HY, Yang K, Wang FS, Wong M. Pathome-chanism of shock wave injuries on femoral artery, vein andnerve. An experimental study in dogs. Injury. 2002;33:439-46.
  15. Buchbinder R, Ptasznik R, Gordon J, Buchanan J, Prabaharan V, Forbes A. Ultrasound-guided extracorporeal shock wave therapy for plantar fasciitis: A randomized controlled trial. JAMA. 2002;288:1364-72.
  16. Njawaya MM, Moses B, Martens D, Orchard JJ, Driscoll T, Negrine J, et al. Ultrasound guidance does not improve the results of shock wave for plantar fasciitis or calcific achilles tendinopathy: A randomized control trial. Clin J Sport Med 2018;28:21-7.
  17. Charrin JE, Noel ER. Shockwave therapy under ultrasonographic guidance in rotator cuff calcific tendinitis. Jt. Bone Spine 2001;68:241-4.
  18. Sabeti-Aschraf M, Dorotka R, Goll A, Trieb K. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff. Am J Sports 2005;33:1365-8.

 

How to Cite this article: Eid J, Moya D | Quality Standards and Techniques for the Application of Focused Shockwaves and Radial Pressure Waves in Musculoskeletal Disorders. | Journal of Regenerative Science | December 2021; 1(1): 9-12.

[Full Text HTML] [Full Text PDF] [XML]


Shock Waves and Radial Pressure Waves: Time to Put a Clear Nomenclature into Practice

Review Article | Volume 1 | Issue 1 | JRS December 2021 | Page 4-8 | Achim M. Loske, Daniel Moya DOI: 10.13107/jrs.2021.v01.i01.005

Author: Achim M. Loske [1], Daniel Moya [2]

[1] Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, Qro., 76230, México.

[2] Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.

Address of Correspondence:
Dr. Daniel Moya, MD
Department of Orthopaedic, Servicio de Ortopedia y Traumatología, Hospital Británico de Buenos Aires.
E-mail: drdanielmoya@yahoo.com.ar


Abstract

Extracorporeal focused shock wave therapy and radial pressure wave therapy are noninvasive approaches with high success rates that hold promise for treating a rapidly increasing number of clinical indications. However, reports, presentations at scientific meetings, and information published by manufacturers reflect confusion in the terminology used. This situation is worrisome because both desired and undesired biological effects depend on the pressure profile and the physical parameters used. Moreover, in many cases, the detailed biological mechanisms involved are yet not fully understood. Only a clear knowledge of the physical concepts can enable comparison among and improvement of treatment protocols and technology. Fortunately, specific definitions and recommendations have been agreed upon by scientific societies promoting international standardization. The main goal of this article is to raise awareness of the importance of having a clear nomenclature worldwide and explain some of the concepts based on the international consensus that has been accepted to date.

Keywords: Shock waves, Radial pressure waves, Physical parameters .


Reference:

  1. Britannica, the Editors of Encyclopaedia. International System of Units. Encyclopedia Britannica, 30 Jul; 2020. Available from: https://www.britannica.com/science/International-System-of-Units [Last accessed on 2021 May 8].
  2. Metric Convention of 1875. US Metric Association. Available from: https://usma.org/laws-and-bills/metric-convention-of-1875 [Last accessed on 2021 May 8].
  3. Delius M, Brendel W. Historical roots of lithotripsy. J Lithotr Stone Dis 1990;2:161-3.
  4. Chaussy C, Eisenberger F, Forssmann B. Epochs in endourology; extracorporeal shockwave lithotripsy (ESWL): A chronology. J Endourol 2007;21:1249-53.
  5. Loske AM. Medical and Biomedical Applications of Shock Waves. Cham, Switzerland: Springer International; 2017. p. 19-42.
  6. Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, et al. Guidelines on Urolithiasis. Arnhem, Netherlands: European Association of Urology; 2015. Available from: https://uroweb.org/wp-content/uploads/22-Urolithiasis_LR_full.pdf [Last accessed on 2021 May 8].
  7. Graff J, Richter KD, Pastor J. Effect of high energy shock waves on bony tissue. Urol Res 1988;16:252-8.
  8. Karpmann RR, Magee FP, Gruen TWS, Mobley T. The lithotriptor and its potential use in the revision of total hip arthroplasty. Orthop Rev 1987;16:38-42.
  9. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 1991;15:181-4.
  10. Rompe JD, Rumler F, Hopf C, Nafe B, Heine J. Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin Orthop Relat Res 1995;321:196-201.
  11. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 1997;158:4-11.
  12. Lohrer H, Gerdesmeyer L, editors. Shock wave therapy in practice. In: Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 50-69.
  13. Speed C. A systematic review of shockwave therapies in soft tissue conditions: Focusing on the evidence. Br J Sports Med 2014;48:1538-42.
  14. Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: Technology, mechanisms, and clinical efficacy. Wound Repair Regen 2012;20:456-65..
  15. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
  16. Auersperg V. DIGEST Guidelines for Extracorporeal Shock Wave Therapy. Physics and Technology of ESWT. Available from: http://www.setoc.es/docs/DIGEST%20guidelines_June%202019_E_A.pdf [Last accessed on 2021 May 8].
  17. IEC 61846 International Standard Ultrasonics/Pressure Pulse Lithotripters/Characteristics of Fields. Vol. 18. Geneva, Switzerland: International Electrotechnical Commission; 1998.
  18. Ueberle F, Rad AJ. Ballistic pain therapy devices: Measurement of pressure pulse parameters. Biomed Tech 2012;57:700-3.
  19. International Society for Medical Shockwave Therapy: Physical principles of ESWT Basic Physical Principles. Available from: https://www.shockwavetherapy.org/about-eswt/physical-principles-of-eswt [Last accessed on 2021 May 8].
  20. Novak P. Physics: F-SW and R-SW. Shock wave therapy in practice. Basic information on focused and radial shock wave physics. In: Lohrer H, Gerdesmeyer L, editors. Multidisciplinary Medical Applications. Heilbronn: Buchverlag; 2014. p. 28-49.
  21. Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular (Onlat) Ondas de Choque en Medicina: La Nueva Frontera. Available from: https://onlat.net/?page_id=2491 [Last accessed on 2021 May 8].
  22. European Commission DG Health and Consumer. Medical Devices: Guidance Document. Classification of medical devices. MEDDEV 2. 4/1 Rev. 9 June 2010. Available from: https://pdf4pro.com/download/medical-devices-guidance-document-6fa97.html [Last accessed on 2021 May 8].
  23. Eid J. ISMST Consensus Statement Terms and Definitions. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/Consensus_MBRadial_pressure_wave_2017_SS.pdf [Last accessed on 2021 May 8].
  24. Consenso de la Federación Ibero-Latinoamericana de Ondas de Choque e Ingeniería Tisular Sobre las Bases Físicas de las Ondas de Choque Focales y de las Ondas de Presión Radial. Available from: https://onlat.net/?page_id=2497 [Last accessed on 2021 May 8].
  25. Consensus Statement on ESWT Indications and Contraindications. Available from: https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/ISMST_consensus_statement_on_indications_and_contraindications_20161012_final.pdf [Last accessed on 2021 May 8].
  26. Recommendation Statement of the Conjoint Physics Working Group of ISMST and DIGEST on ESWT study design and publication. ISMST Recommendations. Available from: https://www.shockwavetherapy.org/about-eswt/ismst-recommendations [Last accessed on 2021 May 8].
  27. Ramon S, Español A, Yebra M, Morillas JM, Unzurrunzaga R, Freitag K, et al. Ondas de choque. Evidencias y recomendaciones SETOC (Sociedad Española de Tratamientos con Ondas de Choque). Rehabilitación (Madr) 2021;55:291-300.
  28. Sociedade Médica Brasileira de Tratamento por Ondas de Choque. Physical Features. Available from: https://www.sbtoc.org.br/aspectos-fisicos [Last accessed on 2021 May 8].
  29. Deutschsprachige Internationale Gesellschaft für Extrakorporale Stoßwellentherapie: Technology, Technical Differences. Available from: https://www.digest-ev.de/gesellschaft/geschichte.html [Last accessed on 2021 May 8].

 


How to Cite this article: Loske AM, Moya D | Shock waves and radial pressure waves: time to put a clear nomenclature into practice. | Journal of Regenerative Science | December 2021; 1(1): 4-8.

[Full Text HTML] [Full Text PDF] [XML]