Posts

Extracorporeal Shock Waves in Metabolic Inflammation

Review Article | Vol 4 | Issue 2 |  July-December 2024 | page: 18-25 | Cláudio Lopes Simplício, Izair Jefthe Rodrigues, Guilherme Antônio Moreira De Barros

DOI: https://doi.org/10.13107/jrs.2024.v04.i02.147


Author: Cláudio Lopes Simplício [1], Izair Jefthe Rodrigues [2], Guilherme Antônio Moreira De Barros [3]

[1] RJ Brazil Ortofisio Clinic – Instdor Clinic, São Paulo State University (UNESP), Botucatu, Brazil,
[2] Department of Neurosurgery, Regen® Institute of Reparative Medicine, Valinhos, São Paulo, Brazil.
[3] Antalgic Therapy and Palliative Care Department, Faculdade de Medicina de Botucatu, UNESP-SP, Botucatu, Brazil

Address of Correspondence
Dr. Cláudio Lopes Simplício,

São Paulo State University (UNESP), Botucatu, Brazil.

E-mail:c.simplicio@unesp.br


Abstract

Adhesive The presentation of this paper provides a comprehensive overview of the challenges associated with metabolic syndrome in clinical practice, while highlighting the innovative role of extracorporeal shock waves as a therapeutic tool to manage metabolic inflammation. A multidisciplinary approach is emphasized, suggesting that collaboration among different areas of expertise is essential to improve patient health outcomes.
Keywords: Metabolic inflammation, Oxidative stress, Extracorporeal shock waves


References:

1. Lian D, Chen MM, Wu H, Deng S, Hu X. The role of oxidative stress in skeletal muscle myogenesis and musclxe disease. Antioxidants 2022;11:755.
2. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol 2019;34:975-91.
3. Trachootham D, Lu W, Ogasawara MA, Rivera-dell Valle N, Huang P. Redox regulation of cell survival. Antioxid Redox Signal 2008;10:1343-74.
4. Antonelli M, Kushner I. It’s time to redefine inflammation. FASEB J 2017;31:1787-91.
5. Neeland IJ, Lim S, Tchernof A, Gastaldelli A, Rangaswami J, Ndumele CE, et al. Metabolic syndrome. Nat Rev Dis Prim 2024;10:77.
6. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018;15:490-503.
7. Massy ZA, Stenvinkel P, Drueke TB. The role of oxidative stress in chronic kidney disease. Semin Dial 2009;22:405-8.
8. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016;2016:7432797.
9. Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochemistry (Mosc) 2020;85:1543-53.
10. Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024;25:270-89.
11. LaForge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol 2020;20:515-6.
12. Mann JP, Savage DB. What lipodystrophies teach us about the metabolic syndrome. J Clin Investig 2019;129:4009-21.
13. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 2020;54:1-7.
14. Proctor DN, O’Brien PC, Atkinson EJ, Nair KS. Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am J Physiol Metab 1999;277:E489-95.
15. Giordani L, He GJ, Negroni E, Sakai H, Law JY, Siu MM, et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol Cell 2019;74:609-21.e6.
16. Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: A scientific statement from the American heart association. Circulation 2023;148:1636-64.
17. Liang X, Or B, Tsoi MF, Cheung CL, Cheung BM. Prevalence of metabolic syndrome in the United States: National health and nutrition examination survey 2011-18. Postgrad Med J 2023;99:985-92.
18. Capuron L, Su S, Miller AH, Bremner JD, Goldberg J, Vogt GJ, et al. Depressive Symptoms and metabolic syndrome: Is inflammation the underlying link? Biol Psychiatry 2008;64:896-900.
19. Haramizu S, Asano S, Butler DC, Stanton DA, Hajira A, Mohamed JS, et al. Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts. J Nutr Biochem 2018;50:83-90.
20. Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci 2023;24:7898.
21. Billeter AT, Scheurlen KM, Probst P, Eichel S, Nickel F, Kopf S, et al. Meta-analysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. Br J Surg 2018;105:168-81.
22. Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The Gut microbiome in neurological disorders. Lancet Neurol 2020;19:179-94.
23. Fitzgerald E, Lambert K, Stanford J, Neale EP. The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: A systematic review. Br J Nutr 2021;125:508-20.
24. Gauffin-Cano P, Marquez A, Russo M, Andrada E, Abeijón-Mukdsi C, Medina R. Probiotics and postbiotics: Focus on metabolic syndrome. In: Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress. Ch. 16. Netherlands: Elsevier; 2021.
25. Eilat-Adar S, Mete M, Fretts A, Fabsitz RR, Handeland V, Lee ET, et al. Dietary patterns and their association with cardiovascular risk factors in a population undergoing lifestyle changes: The strong heart study. Nutr Metab Cardiovasc Dis 2013;23:528-35.
26. Nor Hanipah Z, Schauer PR. Bariatric surgery as a long-term treatment for type 2 diabetes/metabolic syndrome. Ann Rev Med 2020;71:1-15.
27. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech 2009;2:231-7.
28. Michaud A, Drolet R, Noël S, Paris G, Tchernof A. Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women. Metabolism 2012;61:1652-9.
29. Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 2020;20:40-54.
30. Demuynck L, Moonen S, Thiessen F, Vrints I, Moortgat P, Meirte J, et al. Systematic review on working mechanisms of signaling pathways in fibrosis during shockwave therapy. Int J Mol Sci 2024;25:11729.
31. Kverka M, Stepan JJ. Associations among estrogens, the gut microbiome and osteoporosis. Curr Osteoporos Rep 2024;23:2.
32. Rasheed H, McKinney C, Stamp LK, Dalbeth N, Topless RK, Day R, et al. The Toll-like receptor 4 (TLR4) variant rs2149356 and risk of gout in European and Polynesian sample sets. PLoS One 2016;11:e0147939.
33. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860-67.
34. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454:428-35
35. Orozco LD, Bennett BJ, Farber CR, Ghazalpour A, Pan C, Che N, et al. Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages. Cell 2012;151:658-70.
36. Modena DA, Soares CD, Candido EC, Chaim FD, Cazzo E, Chaim EA. Effect of extracorporeal shock waves on inflammation and angiogenesis of integumentary tissue in obese individuals: Stimulating repair and regeneration. Lasers Med Sci 2022;37:1289-97.
37. Bilson J, Oquendo CJ, Read J, Scorletti E, Afolabi PR, Lord J, et al. Markers of adipose tissue fibrogenesis associate with clinically significant liver fibrosis and are unchanged by synbiotic treatment in patients with NAFLD. Metabolism 2024;151:155759.
38. Auersperg V, Trieb K. Extracorporeal shock wave therapy: An update. Efort Open Rev 2020;5:584-592.
39. Wang CJ, Yang KD, Wang FS, Hsu CC, Chen HH. Shock wave treatment shows dose-dependent enhancement of bone mass and bone strength after fracture of the femur. Bone 2004;34:225-30.
40. Goertz O, Hauser J, Hirsch T, Von der Lohe L, Kolbenschlag J, Stricker I, et al. Short-term effects of extracorporeal shock waves on microcirculation. J Surg Res 2015;194:304-11.
41. Guo J, Hai H, Ma Y. Application of extracorporeal shock wave therapy in nervous system diseases: A review. Front Neurol 2022;13:963849.
42. Chen YJ, Wang CJ, Yang KD, Yang KD, Kuo YR, Huang HC, et al. Extracorporeal shock waves promote healing of collagenase-induced achilles tendinitis and increase the expression of TGF-beta1 and IGF-I. J Orthop Res 2004;22:854-61.
43. Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, et al. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of bone regeneration induced by shock wave in segmental defect in rats. J Orthop Res 2004;22:526-34.
44. Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024;20:565-84.
45. Collins KH, Lenz KL, Pollitt EN, Ferguson D, Hutson I, Springer LE, et al. Adipose tissue is a critical regulator of osteoarthritis. Proc Natl Acad Sci U S A 2024;118:e2021096118.
46. Ciampa AR, Carcereri de Prati A, Amelio E, Cavalieri E, Persichini T, Colasanti M, et al. Nitric oxide mediates the anti-inflammatory action of extracorporeal shock waves. FEBS Lett 2006;580:785-90.
47. Basoli V, Chaudary S, Cruciani S, Santaniello S, Balzano F, Ventura C, et al. Mechanical stimulation of fibroblasts by extracorporeal shock waves: Modulation of cell activation and proliferation through a transient proinflammatory milieu. Cell Transplant 2020; 1-10,29:963689720916175.
48. Heimes D, Wiesmann N, Eckrich J, Brieger J, Mattyasovszky S, Proff P, et al. In vivo modulation of angiogenesis and immune response on a collagen matrix via extracorporeal shockwaves. Int J Mol Sci 2020;21:7560.
49. Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. J Orthop Res 2003;21:984-9.
50. Simplício C, Teixeira Mourão AL, Saueressig Kruel AV, d’Almeida A, de Vasconcelos Alves FR, Shinzato GT et al. Treatise on Shock Waves. Brazil: Sociedade Médica Brasileira de Tratamento por Ondas de Choque-Alef-São Paulo, Brazil; 2022.
51. Pirri C, Fede C, Petrelli L, De Rose E, Biz C, Guidolin D, De Caro R, et al. Immediate effects of extracorporeal shock wave therapy in fascial fibroblasts: An in vitro study. Biomedicines 2022;10:1732.
52. Kou D, Chen Q, Wang Y, Xu G, Lei M, Tang X, et al. The application of extracorporeal shock wave therapy on stem cells therapy to treat various diseases. Stem Cell Res Therapy 2024;15:271.


How to Cite this article: Simplício CL, Rodrigues IJ, De Barros GA. Extracorporeal Shock Waves in Metabolic Inflammation. | Journal of Regenerative Science | July-December 2024; 4(2): 18-25.


[Article Text HTML]       [Full Text PDF] 


Extracorporeal Shock Waves and Ultrasound: A Combined Approach in the Treatment of Musculoskeletal Injuries

Original Article | Vol 4 | Issue 2 |  July-December 2024 | page: 26-31 | Cláudio Lopes Simplício, Everaldo Gregio-Junior, Guilherme Antônio Moreira de Barros, Izair Jefthe Rodrigues

DOI: https://doi.org/10.13107/jrs.2024.v04.i02.149


Author: Cláudio Lopes Simplício [1], Everaldo Gregio-Junior [2], Guilherme Antônio Moreira de Barros [3], Izair Jefthe Rodrigues [4]

[1] Orthopedics – Physiatrist – Antalgic Therapy, RJ Brazil Ortofisio Clinic – Instdor Clinic- São Paulo State, University (UNESP) Botucatu – São Paulo, Brazil,
[2] Department of Medical Imaging, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Professor of the Ultrasonography course at Cetrus School, São Paulo, Brazil,
[3] Department of Antalgic Therapy and Palliative Care, Antalgic Therapy and Palliative Care, Faculdade de Medicina de Botucatu, UNESP, São Paulo, Brazil,
[4] Department of Neurosurgery, Regen® Institute of Reparative Medicine, Valinhos, São Paulo, Brazil

Address of Correspondence
Dr. Cláudio Lopes Simplício,

Orthopedics – Physiatrist – Antalgic Therapy, RJ Brazil Ortofisio Clinic – Instdor Clinic- São Paulo State, University (UNESP) Botucatu – São Paulo, Brazil.

Email: c.simplicio@unesp.br


Abstract

The combination of extracorporeal shock wave therapy (ESWT) and ultrasound (US) emerges as an innovative and effective approach in the treatment of musculoskeletal injuries. This integration provides significant benefits in both diagnosis and treatment, resulting in better clinical outcomes and faster recovery for patients. US stands out as a non-invasive diagnostic tool that offers real-time imaging, and is widely used in the assessment of various musculoskeletal conditions, including injuries to the shoulder, elbow, wrist, knee, and ankle.
ESWT is an effective method that has expanded to treat a variety of musculoskeletal pathologies through the application of acoustic waves. The interaction between US and shock waves is crucial in ensuring precision in interventions, allowing for more targeted and effective treatment.
In addition to enhancing the accuracy of injections and therapeutic interventions, US also plays a critical role in monitoring clinical progress and the early detection of complications. Studies show that the combination of these approaches results in significant pain relief and improved functionality for patients. Therefore, the integrated use of US and shock wave therapy represents a valuable strategy in the management of musculoskeletal injuries, broadening its application in clinical practices.
Keywords: Ultrasound, Musculoskeletal injuries, Extracorporeal shock waves


References:

1. Tsai P, Edison J, Wang C, Sefton J, Manning KQ, Gramlich MW. Myofascial trigger point (MTrP) size and elasticity properties can be used to differentiate characteristics of MTrPs in lower back skeletal muscle. Sci Rep 2024;14:7562.
2. Štěpánková T, Quittková A, Čech Z, Machač S. Sonographic measurement of deep fascia parameters – Interrater reliability. Surg Radiol Anat 2024;46:1481-9.
3. Farin PU, Jaroma H. Sonographic findings of rotator cuff calcifications. J Ultrasound Med 1995;14:7-14.
4. Patil P, Dasgupta B. Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Ther Adv Musculoskelet Dis 2012;4:341-55.
5. Kazam JK, Nazarian LN, Miller TT, Sofka CM, Parker L, Adler RS. Sonographic evaluation of femoral trochlear cartilage in patients with knee pain. J Ultrasound Med 2011;30:797-802.
6. Naredo E, Rodriguez-Garcia SC, Terslev L, Martinoli C, Klauser A, Hartung W, et al. The EFSUMB guidelines and recommendations for musculoskeletal ultrasound – part II: Joint pathologies, pediatric applications, and guided procedures. [EFSUMB-Leitlinien und -Empfehlungen für den muskuloskelettalen Ultraschall – Teil II: Gelenkpathologien, pädiatrische Anwendungen und geführte Verfahren] Ultraschall Med 2022;43:252-73.
7. Wuerfel T, Schmitz C, Jokinen LL. The effects of the exposure of musculoskeletal tissue to extracorporeal shock waves. Biomedicines 2022;10:1084.
8. De la Corte-Rodríguez H, Román-Belmonte JM, Rodríguez-Damiani BA, Vázquez-Sasot A, Rodríguez-Merchán EC. Extracorporeal shock wave therapy for the treatment of musculoskeletal pain: A narrative review. Healthcare (Basel) 2023;11:2830.
9. Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018;100:251-63.
10. Loske AM, Moya D. Shock waves and radial pressure waves: Time to put a clear nomenclature into practice. J Regen Sci 2021;1:4-8.
11. Ryskalin L, Morucci G, Natale G, Soldani P, Gesi M. Molecular mechanisms underlying the pain-relieving effects of extracorporeal shock wave therapy: A focus on fascia nociceptors. Life (Basel) 2022;12:743.
12. Di Renzi D, Zavaroni S, Mazzola M, Petroselli L, Bruno AA, Trischitta D, et al. Treatment for symptomatic calcific tendinopathy of the shoulder: Ultrasound-guided needling lavage and extracorporeal shock wave therapy vs extracorporeal shock wave therapy. A prospective observational study. Muscles Ligaments Tendons J 2023;3:440-8.
13. Khesa L. The Comparative Efficacy of Spinal Manipulative Therapy and Extracorporeal Shockwave Therapy in the Treatment of Chronic Lumbar Facet Syndrome. (Doctoral Thesis). Johannesburg: University of Johannesburg; 2012.
14. Fulceri F, Ryskalin L, Morucci G, Busoni F, Soldani P, Gesi M. Pain-relieving effects of shockwave therapy for ledderhose disease: An ultrasound-based study of an unusual bilateral case. Life (Basel) 2024;14:169.
15. Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JF. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020;11:S309-18.
16. Gómez-Chiguano GF, Navarro-Santana MJ, Cleland JA, Arias-Buría JL, Fernández-de-las-Peñas C, Ortega-Santiago R, et al. Effectiveness of ultrasound-guided percutaneous electrolysis for musculoskeletal pain: A systematic review and meta-analysis. Pain Med 2020;22:1055-71.
17. Sanchez-Ibáñez JM. Clinical Course in the Treatment of Chronic Patellar Tendinopathy through Ultrasound Guided Percutaneous Electrolysis Intratissue (EPIVR): Study of a Population Series of Cases in Sport. Hawaii: Atlantic International University; 2009.
18. Perrot S, Cohen M, Barke A, Korwisi B, Rief W, Treede RD. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain 2019;160:77-82.
19. Lin I, Wiles L, Waller R, Goucke R, Nagree Y, Gibberd M, et al. What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: Systematic review. Br J Sports Med 2020;54:79-86.
20. Rio E, Docking SI. Adaptation of the pathological tendon: You cannot trade in for a new one, but perhaps you don’t need to? Br J Sports Med 2018;52:622-3.
21. Sánchez-Ibáñez JM. A molecular mechanisms of regeneration in chronic tendinopathy using ultrasound-guided intratissue percutaneous electrolysis (EPI®). MOJ Immunol 2017;5:00148.
22. Kaux JF, Forthomme B, Goff CL, Crielaard JM, Croisier JL. Current opinions on tendinopathy. J Sports Sci Med 2011;10:238-53.
23. Lee CC, Lin WR, Hsu JM, Chow YC, Tsai WK, Chiang PK, et al. Comparison of electrohydraulic and electromagnetic extracorporeal shock wave lithotriptors for upper urinary tract stones in a single center. World J Urol 2019;37:931-5.
24. Chang TH, Lin WR, Tsai WK, Chiang PK, Chen M, Tseng JS, et al. Comparison of ultrasound-assisted and pure fluoroscopy-guided extracorporeal shockwave lithotripsy for renal stones. BMC Urol 2020;20:183.
25. Jakobeit C, Winiarski B, Jakobeit S, Welp L, Spelsberg G. Ultrasound-guided, high-energy extracorporeal – shock-wave treatment of symptomatic calcareous tendinopathy of the shoulder. ANZ J Surg 2002;72:496-500.
26. Bechay J, Lawrence C, Namdari S. Calcific tendinopathy of the rotator cuff: A review of operative versus nonoperative management. Phys Sportsmed 2020;78:241-6.
27. Rompe JD, Rumler F, Hopf C, Nafe B, Heine J. Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin Orthop Relat Res 1995;321:196-201.
28. Anwar N, Li S, Long L, Zhou L, Fan M, Zhou Y, et al. Combined effectiveness of extracorporeal radial shockwave therapy and ultrasound-guided trigger point injection of lidocaine in upper trapezius myofascial pain syndrome. Am J Transl Res 2022;14:182-96.
29. Fang, W. H., Chen, X. T., & Vangsness Jr, C. T. (2021). Ultrasound-Guided Knee Injections Are More Accurate Than Blind Injections: A Systematic Review of Randomized Controlled Trials. Arthroscopy, Sports Medicine, and Rehabilitation, 3(4), e1177-e1184. https://doi.org/10.1016/j.asmr.2021.01.028
30. Raeissadat, S. A., Rayegani, S. M., Faghihi Langroudi, T., & Khoiniha, M. (2017). Comparing the accuracy and efficacy of ultrasound-guided versus blind injections of steroid in the glenohumeral joint in patients with shoulder adhesive capsulitis. Clinical Rheumatology, 36(4), 933-940. https://doi.org/10.1007/s10067-016-3393-8
31. Lee, H.-J., Lim, K.-B., Kim, D.-Y., & Lee, K.-T. (2009). Randomized controlled trial for efficacy of intra-articular injection for adhesive capsulitis: ultrasonography-guided versus blind technique. Archives of Physical Medicine and Rehabilitation, 90(12), 1997-2002. https://doi.org/10.1016/j.apmr.2009.07.025
32. Paoletta, M., Moretti, A., Liguori, S., Snichelotto, F., Menditto, I., Toro, G., Gimigliano, F., & Iolascon, G. (2021). Ultrasound imaging in sport-related muscle injuries: Pitfalls and opportunities. Medicina, 57(10), 1040. https://doi.org/10.3390/medicina57101040
33. Saha, P., Smith, M., & Hasan, K. (2023). Accuracy of Intraarticular Injections: Blind vs. Image Guided Techniques,Review of Literature. Journal of Functional Morphology and Kinesiology, 8, 93. https://doi.org/10.3390/jfmk8030093
34. Shin, Y., Yang, J., Lee, Y. H., & Kim, S. (2021). Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography, 40(1), 30-44. https://doi.org/10.14366/usg.20080
35. Fodor, D., Rodriguez-Garcia, S. C., Cantisani, V., Hammer, H. B., Hartung, W., Klauser, A., Martinoli, C., Terslev, L., Alfageme, F., Bong, D., Bueno, A., Collado, P., D’Agostino, M. A., de la Fuente, J., Iohom, G., Kessler, J., Lenghel, M., Malattia, C., Mandl, P., Mendoza-Cembranos, D., Micu, M., Möller, I., Najm, A., Özçakar, L., Picasso, R., Plagou, A., Sala-Blanch, X., Sconfienza, L. M., Serban, O., Simoni, P., Sudoł-Szopińska, I., Tesch, C., Todorov, P., Uson, J., Vlad, V., Zaottini, F., Bilous, D., Gutiu, R., Pelea, M., Marian, A., & Naredo, E. (2021). The EFSUMB Guidelines and Recommendations for Musculoskeletal Ultrasound – Part I: Extraarticular Pathologies. Die EFSUMB-Leitlinien und -Empfehlungen für den muskuloskelettalen Ultraschall. Teil I: Extraartikuläre Pathologien. Supplementary material available at: https://doi.org/10.1055/a-1562-1455
36. Akçin, A. İ., Eyvaz, N., Dündar, Ü., Toktaş, H., Yeşil, H., Eroğlu, S., & Adar, S. (2025). The clinical efficacy of extracorporeal shock wave therapy combined with platelet rich plasma and exercise for lateral epicondylitis: Prospective randomized sham-controlled ultrasonographic study. Archives of Physical Medicine and Rehabilitation. https://doi.org/10.1016/j.apmr.2025.01.420


How to Cite this article: Simplício CL, Junior EG, Barros GAMD, Rodrigues IJ | Extracorporeal Shock Waves and Ultrasound: A Combined Approach in the Treatment of Musculoskeletal Injuries. | Journal of Regenerative Science | July-December 2024; 4(2): 00-00.

 


[Article Text HTML]       [Full Text PDF]