Posts

Autologous versus Non-autologous Exosomes: Immunological, Safety, and Regulatory Considerations in Regenerative Medicine

Original Article | Vol 5 | Issue 1 |  January-June 2025 | page: 31-33 | Ivanny Marchant, Belén Rodríguez, Valentina Pozo, Leopoldo Parada, Carla Salvo, Pablo Olivero

DOI: https://doi.org/10.13107/jrs.2025.v05.i01.167

Open Access License: CC BY-NC 4.0

Copyright Statement: Copyright © 2025; The Author(s).

Submitted Date: 16 Mar 2025, Review Date: 20 May 2025, Accepted Date: May 2025 & Published: 30 Jun 2025


Author: Ivanny Marchant [1], Belén Rodríguez [1], Valentina Pozo [1], Leopoldo Parada [2], Carla Salvo [3], Pablo Olivero [1]

[1] Unidad de Estudios Clínicos, Escuela de Medicina, Universidad de Valparaíso, Chile,
[2] Centro de Medicina Regenerativa CITOMED, Viña del Mar, Chile,
[3] Centro de Sangre y Tejidos de Valparaíso, Chile.

Address of Correspondence
Dr. Pablo Olivero,
Unidad de Estudios Clínicos, Escuela de Medicina, Universidad de Valparaíso, Chile.
E-mail: pablo.olivero@uv.cl


Abstract

Small extracellular vesicles (sEVs), commonly referred to as exosomes, have emerged as novel therapeutic tools in regenerative and esthetic medicine. A critical decision in their clinical application is the choice between autologous and non-autologous products, as this distinction directly impacts safety, immunocompatibility, efficacy, and regulatory compliance. This review analyzes the immunological profile and biological risks associated with exosomes’ clinical use according to their cellular origin, addressing persistence, pathogen transmission, delivery routes, and regulatory classification. Furthermore, we highlight the strategic role of blood centers and biobanks in producing high-safety allogeneic sEVs, especially those derived from human platelets and mesenchymal stromal cells expanded in xenofree conditions. While autologous exosomes offer maximal immunological safety, standardized allogeneic strategies free from animal-derived components represent a scalable and regulatory-compatible alternative for modern regenerative therapies.
Keywords: Exosomes, Regenerative Medicine, Autologous Exosomes, Non-autologous Exosomes


References:

1. Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018;10:218.
2. Herrmann IK, Wood MJ, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 2021;16:748-59.
3. Adelipour M, Lubman DM, Kim J. Potential applications of mesenchymal stem cells and their derived exosomes in regenerative medicine. Expert Opin Biol Ther 2023;23:491-507.
4. Ma Z, Yang J, Lu Y, Liu Z, Wang X. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020;12:814-40.
5. Rezabakhsh A, Sokullu E, Rahbarghazi R. Applications, challenges and prospects of mesenchymal stem cell exosomes in regenerative medicine. Stem Cell Res Ther 2021;12:521.
6. Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019;54:789-92.
7. Beetler DJ, Di Florio DN, Law EW, Groen CM, Windebank AJ, Peterson QP, et al. The evolving regulatory landscape in regenerative medicine. Mol Aspects Med 2023;91:101138.
8. Andriolo G, Provasi E, Cicero VL, Brambilla A, Soncin S, Torre T, et al. Exosomes from human cardiac progenitor cells for therapeutic applications: Development of a GMP-grade manufacturing method. Front Physiol 2018;9:1169.
9. Codispoti B, Marrelli M, Paduano F, Tatullo M. NANOmetric Bio-banked MSC-derived exosome (NANOBIOME) as a novel approach to regenerative medicine. J Clin Med 2018;7:357.
10. Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig 2021;8:7.
11. Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GE, Ng CY, et al. Comparing the therapeutic potential of stem cells and their secretory products in regenerative medicine. Stem Cells Int 2021;2021:2616807.
12. D’Souza R, Her Y, Hussain N, Karri J, Schatman ME, Calodney AK, et al. Evidence-based clinical practice guidelines on regenerative medicine treatment for chronic pain: A consensus report from a multispecialty working group. J Pain Res 2024;17:2951-3001.
13. Everts PA, Podesta L, Lana JF, Shapiro G, Domingues RB, Van Zundert A, et al. The regenerative marriage between high-density platelet-rich plasma and adipose tissue. Int J Mol Sci 2025;26:2154.
14. Giebel B. A milestone for the therapeutic EV field: FDA approves Ryoncil, an allogeneic bone marrow-derived mesenchymal stromal cell therapy. Extracell Vesicles Circ Nucl Acids 2025;6:183-90.
15. Basyoni AE, Atta A, Salem MM, Mohamed TM. Harnessing exosomes for targeted drug delivery systems to combat brain cancer. Cancer Cell Int 2025;25:150.
16. Cavallo C, Merli G, Zini N, D’Adamo S, Cattini L, Guescini M, et al. Small extracellular vesicles from inflamed adipose derived stromal cells enhance the NF-κB-dependent inflammatory/catabolic environment of osteoarthritis. Stem Cells Int 2022;2022:9376338.



How to Cite this article: Marchant I, Rodríguez B, Pozo V, Parada L, Salvo C, Olivero P | Autologous versus Non-autologous Exosomes: Immunological, Safety, and Regulatory Considerations in Regenerative Medicine | Journal of Regenerative Science | Jan-Jun 2025; 5(1): 31-33.

 

 


[Article Text HTML]       [Full Text PDF] 


Personalized Multimodal Treatment for Adhesive Capsulitis: A Case Series on Regenerative Medicine and Noninvasive Therapies

Original Article | Vol 4 | Issue 2 |  July-December 2024 | page: 12-14 | Napoliane Costa Santos, André Vinicius Saueressig Kruel, Alex Pontes de Macedo, Fabio Ramos Costa, Luyddy Pires, Maria Laura Schiefelbein, Palmerindo Antônio Tavares de Mendonça Néto, Renata Takeyama de Oliveira, Daiane Agostini, Jose Fábio Lana

DOI: https://doi.org/10.13107/jrs.2024.v04.i02.145


Author: Napoliane Costa Santos [1], André Vinicius Saueressig Kruel [2], Alex Pontes de Macedo [1], Fabio Ramos Costa [3], Luyddy Pires [1], Maria Laura Schiefelbein [4], Palmerindo Antônio Tavares de Mendonça Néto [5], Renata Takeyama de Oliveira [1], Daiane Agostini [2], Jose Fábio Lana [1]

[1] Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil,
[2] Proregen Clínica Médica, Bento Gonçalves, Rio Grande do Sul, Brasil.
[3] TRATE – Traumatologia Esportiva, Salvador, Brazil,
[4] Departamento de Ortopedia, TRATE, Traumatologia Esportiva, Salvador, BA, Brazil, Federal University of Health Science of Porto Alegre, Porto Alegre, Brazil,
[5] Instituto Regenera Dor, Juazeiro do Norte, Ceará, Brazil.

Address of Correspondence
Dr. André Kruel
Proregen Clínica Médica, Bento Gonçalves, Rio Grande do Sul, Brasil.
E-mail: kruel.andre@gmail.com


Abstract

Introduction: Adhesive capsulitis causes chronic shoulder pain and restricted range of motion (ROM). Conventional treatments often offer limited relief, prompting the need for innovative approaches, such as high-intensity pulsed electromagnetic field (PEMF) therapy, shockwave therapy, and orthobiologic injections.

Objective: To evaluate the efficacy of a multimodal approach combining shockwave therapy, high-intensity PEMF therapy, orthobiologic injections, and complementary therapies in improving pain and shoulder function in patients with adhesive capsulitis.

Methods: This retrospective case series included five patients treated in Indaiatuba, São Paulo, Brazil, between May 2023 and October 2024. Individualized multimodal protocols were performed. Pain and ROM were assessed pre- and post-treatment.

Discussion: All patients showed significant improvements in pain and ROM after treatment. High-intensity PEMF therapy, shockwave therapy, and orthobiologics enhanced tissue regeneration, supported by complementary therapies. Personalized protocols optimized outcomes, with synergistic effects observed between treatments.

Conclusion: A multimodal, personalized approach effectively reduced pain and improved function in adhesive capsulitis patients. This strategy shows promise, especially for those unresponsive to conventional treatments, warranting further research.

Keywords: Adhesive capsulitis, High intensity pulsed electromagnetic field therapy, Orthobiologics, Regenerative medicine, Shockwave therapy


References:

  1. Mello DP, Corbin JN, Holanda LS, Pascarelli L, Nishimura EM, Almeida TB. Incidence and epidemiology of adhesive capsulitis during the COVID-19 pandemic. Acta Ortop Bras 2023;31:e261132.
  2. Varriano G, Nardone V, Brunese MC, Bruno M, Santone A, Brunese L, Zappia M. An approach leveraging radiomics and model checking for the automatic early diagnosis of adhesive capsulitis. Dent Sci Rep 2024;14:18878.
  3. Omar FK, Alshaimaa ME, Khaled SA. Adhesive capsulitis of the shoulder joint: Correlation between the utrasonographic and MRI findings. Ain Shams Med J 2024;75:387-98.
  4. Riccardo P, Federico P, Federico Z, Giovanni M, Maribel MP, Alberto T, et al. Adhesive capsulitis of the shoulder: Current concepts on the diagnostic work-up and evidence-based protocol for radiological evaluation. Diagnostics (Basel) 2023;13:3410.
  5. Evin C. Effectiveness of strengthening and stretching exercise along with proprioceptive neuromuscular facilitation techniques to reduce pain and improve shoulder range of motion in adhesive capsulitis: A literature review. Physiotherapy 2024;18:81-9.
  6. De la Corte-Rodríguez H, Román-Belmonte JM, Rodríguez-Damiani BA, Vázquez-Sasot A, Rodríguez-Merchán EC. Extracorporeal shock wave therapy for the treatment of musculoskeletal pain: A narrative review. Healthcare (Basel) 2023;11:2830.
  7. Mayer Y, Shibli JA, Saada HA, Melo M, Gabay E, Barak S, et al. Pulsed electromagnetic therapy: Literature review and current Brazilian Dent J 2024;35:e24-6109.
  8. Mittermayr R, Haffner N, Feichtinger X, Schaden W. The role of shockwaves in the enhancement of bone repair-from basic principles to clinical Injury 2021;52 Suppl 2:S84-90.
  9. Bakaliuk TG, Gordiychuk I, Stelmakh HO, Makarchuk NR, Stoliarchuk VM. Application of shock wave therapy in neurorehabilitation (literature review). Art Med 2022;1:138.
  10. Blanchard E, Harvi J, Vasudevan J, Swanson RL. Platelet-rich plasma for adhesive capsulitis: A systematic review. Cureus 2023;15:e46580.
  11. Thu AC, Kwak SG, Shein WN, Htun M, Htwe TT, Chang M Comparison of ultrasound-guided platelet-rich plasma injection and conventional physical therapy for management of adhesive capsulitis: A randomized trial. J Int Med Res 2020;48:300060520976032.
  12. Sampson S, Bemden AB, Aufiero D. Autologous bone marrow concentrate: Review and application of a novel intra-articular orthobiologic for cartilage Phys Sportsmed 2013;41:7-18.
  13. Katz NB, Tsitsilianos N, Nowak AS, Douglas SR, Tenforde AS, Borg-Stein J. Advanced non-operative interventions for anterior knee pain. Curr Rev Musculoskeletal Med 2024;17:589-615.
  14. Oliveira VO, Vergara JM, Oliveira VF, Lara PH, Nogueira LC, Arliani GG. Extracorporeal shockwave therapy in shoulder injuries: Prospective study. Acta Ortop Bras 2021;29:268-73.
  15. Tedla JS, Sangadala Proprioceptive neuromuscular facilitation techniques in adhesive capsulitis: A systematic review and meta-analysis. J Musculoskelet Neuronal Interact 2019;19:482-91.
  16. De la Barra Ortiz HA, Parizotto N, Arias M, Liebano R. Effectiveness of high-intensity laser therapy in the treatment of patients with frozen shoulder: A systematic review and meta-analysis. Lasers Med Sci 2023;38:266.
  17. Xue X, Song Q, Yang X, Kuati A, Fu H, Liu Y, et al. Effect of extracorporeal shockwave therapy for rotator cuff tendinopathy: A systematic review and meta-analysis. BMC Musculoskeletal Disord 2024;25:357.

How to Cite this article: Santos NC, Saueressig Kruel AV, de Macedo AP, Costa FR, Pires L, Schiefelbein ML, de Mendonça Néto PAT, de Oliveira RT, Agostini D, Fábio Lana J | Personalized Multimodal Treatment for Adhesive Capsulitis: A Case Series on Regenerative Medicine and Noninvasive Therapies. | Journal of Regenerative Science | July-December 2024; 4(2): 12-17.

 

 


[Article Text HTML]       [Full Text PDF]